
ABACUS

ABACUS

Apr 12, 2024

QUICK START

1 Easy Installation 2
1.1 Prerequisites . 2
1.2 Install requirements . 3
1.3 Install requirements by toolchain . 3
1.4 Get ABACUS source code . 3
1.5 Configure . 4
1.6 Build and Install . 5
1.7 Run . 6
1.8 Container Deployment . 6
1.9 Install by conda . 7

2 Two Quick Examples 8
2.1 Running SCF Calculation . 8
2.2 Running Geometry Optimization . 11

3 Brief Introduction of the Input Files 13
3.1 INPUT . 13
3.2 STRU . 14
3.3 KPT . 15

4 Brief Introduction of the Output Files 16
4.1 INPUT . 16
4.2 running_scf.log . 16
4.3 KPT . 16
4.4 istate.info . 16
4.5 STRU_SIMPLE.cif . 17
4.6 warning.log . 17

5 Advanced Installation Options 18
5.1 Build with Libxc . 18
5.2 Build with DeePKS . 18
5.3 Build with DeePMD-kit . 19
5.4 Build with LibRI and LibComm . 19
5.5 Build Unit Tests . 19
5.6 Build Performance Tests . 20
5.7 Build with CUDA support . 20
5.8 Build math library from source . 20
5.9 Build ABACUS with make . 20

6 Running SCF 24
6.1 Initializing SCF . 24

i

6.2 Constructing the Hamiltonian . 24
6.3 Solving the Hamiltonian . 26
6.4 Converging SCF . 27
6.5 Accelerating the Calculation . 28
6.6 SCF in Complex Environments . 29
6.7 Spin-polarization and SOC . 32
6.8 SOC Effects . 35

7 Basis Set and Pseudopotentials 37
7.1 Basis Set . 37
7.2 Generating atomic orbital bases . 37
7.3 BSSE Correction . 37
7.4 Pseudopotentials . 38

8 Geometry Optimization 39
8.1 Optimization Algorithms . 39
8.2 Constrained Optimization . 40

9 Molecular Dynamics 42
9.1 FIRE . 43
9.2 NVE . 43
9.3 Nose Hoover Chain . 43
9.4 Langevin . 43
9.5 Anderson . 44
9.6 Berendsen . 44
9.7 Rescaling . 44
9.8 Rescale_v . 44
9.9 MSST . 44
9.10 DPMD . 44

10 Accelerate Performance 46
10.1 CUDA GPU Implementations . 46

11 Electronic Properties and Outputs 48
11.1 Extracting Band Structure . 48
11.2 Calculating DOS and PDOS . 49
11.3 Mulliken Charge Analysis . 52
11.4 Extracting Electrostatic Potential . 53
11.5 Extracting Wave Functions . 55
11.6 Extracting Charge Density . 55
11.7 Extracting Hamiltonian and Overlap Matrices . 56
11.8 Extracting Density Matrices . 58
11.9 Berry Phase Calculation . 59

12 Interfaces to Other Softwares 61
12.1 DeePKS . 61
12.2 DP-GEN . 61
12.3 DeepH . 68
12.4 Hefei-NAMD . 69
12.5 Phonopy . 69
12.6 Wannier90 . 70
12.7 ASE . 72
12.8 PYATB . 74
12.9 ShengBTE . 76
12.10 CANDELA . 81

ii

12.11 TB2J . 82

13 Detailed Introduction of the Input Files 87
13.1 Full List of INPUT Keywords . 87
13.2 The STRU file . 188
13.3 The KPT file . 194

14 How to Cite 197

15 Development team 198

16 ABACUS Contribution Guide 199
16.1 Contribution Process . 199

17 Contributing to ABACUS 200
17.1 Table of Contents . 200
17.2 Got a question? . 200
17.3 Structure of the package . 201
17.4 Submitting an Issue . 203
17.5 Comment style for documentation . 203
17.6 Code formatting style . 204
17.7 Adding a unit test . 204
17.8 Running unit tests . 205
17.9 Debugging the codes . 206
17.10 Adding a new building component . 206
17.11 Generating code coverage report . 207
17.12 Submitting a Pull Request . 208
17.13 Commit message guidelines . 208

18 Lists of continuous integration (CI) pipelines 210
18.1 On Pull Request (PR) . 210
18.2 On Routine . 211
18.3 On Release . 211

19 Frequently Asked Questions 212
19.1 General Questions . 212
19.2 Installation . 212
19.3 Setting up jobs . 212
19.4 Failed jobs . 213
19.5 Miscellaneous . 214

iii

ABACUS

ABACUS (Atomic-orbital Based Ab-initio Computation at UStc) is an open-source computer code package based on
density functional theory (DFT). The package utilizes both plane wave and numerical atomic basis sets with the usage
of norm-conserving pseudopotentials to describe the interactions between nuclear ions and valence electrons. ABACUS
supports LDA, GGA, meta-GGA, and hybrid functionals. Apart from single-point calculations, the package allows ge-
ometry optimizations and ab-initio molecular dynamics with various ensembles. The package also provides a variety of
advanced functionalities for simulating materials, including the DFT+U, VdW corrections, and implicit solvation model,
etc. In addition, ABACUS strives to provide a general infrastructure to facilitate the developments and applications of
novel machine-learning-assisted DFT methods (DeePKS, DP-GEN, DeepH, etc.) in molecular and material simulations.

QUICK START 1

CHAPTER

ONE

EASY INSTALLATION

This guide helps you install ABACUS with basic features. For DeePKS, DeePMD and Libxc support, or building
with make, please refer to the advanced installation guide after going through this page. We recommend building
ABACUS with cmake to avoid dependency issues. We recommend compiling ABACUS(and possibly its requirements)
from the source code using the latest compiler for the best performace. You can also deploy ABACUS without building
by Docker or conda. Please note that ABACUS only supports Linux; for Windows users, please consider using WSL or
docker.

1.1 Prerequisites

To compile ABACUS, please make sure that the following prerequisites are present:
• CMake >= 3.16 .
• C++ compiler, supporting C++11. You can use Intel® C++ compiler or GCC.
GCC version 5 or later is always required. Intel compilers also use GCC headers and libraries(ref).

• MPI library. The recommended versions are Intel MPI, MPICH or Open MPI.
• Fortran compiler if you are building BLAS, LAPACK, ScaLAPACK, and ELPA from source file. You can use
Intel® Fortran Compiler or GFortran.

• BLAS. You can use OpenBLAS.
• LAPACK.
• FFTW3.

These requirements support the calculation of plane-wave basis in ABACUS. For LCAO basis calculation, additional
components are required:

• ScaLAPACK.
• CEREAL.
• ELPA >= 2017 (optional).

2

https://learn.microsoft.com/en-us/windows/wsl/
https://cmake.org/
https://software.intel.com/enus/c-compilers
https://gcc.gnu.org/
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compatibility-and-portability/gcc-compatibility-and-interoperability.html#gcc-compatibility-and-interoperability_GUID-52CB6FE0-83DA-4028-9EF4-0DFAF1652736
https://software.intel.com/enus/mpi-library
https://www.mpich.org/
https://www.open-mpi.org/
https://www.intel.com/content/www/us/en/developer/tools/oneapi/fortran-compiler.html
https://gcc.gnu.org/fortran/
http://www.netlib.org/blas/
https://www.openblas.net/
http://www.netlib.org/lapack/
http://www.fftw.org/
http://www.netlib.org/scalapack/
https://uscilab.github.io/cereal/
https://elpa.mpcdf.mpg.de/

ABACUS

1.2 Install requirements

Some of these packages can be installed with popular package management system, such as apt and yum:

sudo apt update && sudo apt install -y libopenblas-openmp-dev liblapack-dev␣
↪→libscalapack-mpi-dev libelpa-dev libfftw3-dev libcereal-dev libxc-dev g++ make␣
↪→cmake bc git pkgconf

Installing ELPA by apt only matches requirements on Ubuntu 22.04. For earlier linux distributions, you
should build ELPA from source.

We recommend Intel® oneAPI toolkit (former Intel® Parallel Studio) as toolchain. The Intel® oneAPI Base Toolkit
contains Intel® oneAPI Math Kernel Library (aka MKL), including BLAS, LAPACK, ScaLAPACK and FFTW3. The
Intel® oneAPI HPC Toolkit contains Intel® MPI Library, and C++ compiler(including MPI compiler).

Please note that building elpa with a different MPI library may cause conflict. Don’t forget to set envi-
ronment variables before you start! cmake will use Intel MKL if the environment variable MKLROOT is
set.

Please refer to our guide on installing requirements.

1.3 Install requirements by toolchain

We offer a set of toolchain scripts to compile and install all the requirements automatically and suitable for machine
characteristic in an online or offline way. The toolchain can be downloaded with ABACUS repo, which is easily used
and can have a convenient installation under HPC environment in both GNU or Intel-oneAPI toolchain. Sometimes,
ABACUS by toolchain installation may have highly efficient performance. A Tutorial for using this toolchain can be
accessed in bohrium-notebook

Notice: the toolchain is under development, please let me know if you encounter any problem in using this
toolchain.

1.4 Get ABACUS source code

Of course a copy of ABACUS source code is required, which can be obtained via one of the following choices:
• Clone the whole repo with git: git clone https://github.com/deepmodeling/
abacus-develop.git

• Clone the minimum required part of repo: git clone https://github.com/deepmodeling/
abacus-develop.git --depth=1

• Download the latest source code without git: wget https://github.com/deepmodeling/
abacus-develop/archive/refs/heads/develop.zip

• Get the source code of a stable version here
• If you have connection issues accessing GitHub, please try out our official Gitee repo: e.g. git clone https:/
/gitee.com/deepmodeling/abacus-develop.git

1.2. Install requirements 3

https://software.intel.com/content/www/us/en/develop/tools/oneapi/commercial-base-hpc.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/all-toolkits.html#base-kit
https://software.intel.com/content/www/us/en/develop/tools/oneapi/all-toolkits.html#hpc-kit
https://software.intel.com/content/www/us/en/develop/documentation/get-started-with-intel-oneapi-render-linux/top/configure-your-system.html
https://software.intel.com/content/www/us/en/develop/documentation/get-started-with-intel-oneapi-render-linux/top/configure-your-system.html
https://github.com/deepmodeling/abacus-develop/wiki/Building-and-Running-ABACUS
https://github.com/deepmodeling/abacus-develop/tree/develop/toolchain
https://nb.bohrium.dp.tech/detail/5215742477
https://github.com/deepmodeling/abacus-develop/releases
https://gitee.com/deepmodeling/abacus-develop/

ABACUS

1.4.1 Update to latest release

Please check the release page for the release note of a new version.
It is OK to download the new source code from beginning following the previous step.
To update your cloned git repo in-place:

git remote -v
Check if the output contains the line below
origin https://github.com/deepmodeling/abacus-develop.git (fetch)
The remote name is marked as "upstream" if you clone the repo from your own fork.

Replace "origin" with "upstream" or the remote name corresponding to deepmodeling/
↪→abacus-develop if necessary
git fetch origin
git checkout v3.2.0 # Replace the tag with the latest version
git describe --tags # Verify if the tag has been successfully checked out

Then proceed to the Build and Install part. If you encountered errors, try remove the build directory first and recon-
figure.
To use the codes under active development:

git checkout develop
git pull

1.5 Configure

The basic command synopsis is:

cd abacus-develop
cmake -B build [-D <var>=<value>] ...

Here, ‘build’ is the path for building ABACUS; and ‘-D’ is used for setting up some variables for CMake indicating optional
components or requirement positions.

• CMAKE_INSTALL_PREFIX: the path of ABACUS binary to install; /usr/local/bin/abacus by default
• Compilers

– CMAKE_CXX_COMPILER: C++ compiler; usually g++(GNUC++ compiler) or icpx(Intel C++ compiler).
Can also set from environment variable CXX. It is OK to use MPI compiler here.

– MPI_CXX_COMPILER: MPI wrapper for C++ compiler; usually mpicxx or mpiicpc(for Intel MPI).
• Requirements: Unless indicated, CMake will try to find under default paths.

– MKLROOT: If environment variable MKLROOT exists, cmake will take MKL as a preference, i.e. not us-
ing LAPACK, ScaLAPACK and FFTW. To disable MKL, unset environment variable MKLROOT, or pass
-DMKLROOT=OFF to cmake.

– LAPACK_DIR: Path to OpenBLAS library libopenblas.so(including BLAS and LAPACK)
– SCALAPACK_DIR: Path to ScaLAPACK library libscalapack.so
– ELPA_DIR: Path to ELPA install directory; should be the folder containing ‘include’ and ‘lib’.

1.5. Configure 4

https://github.com/deepmodeling/abacus-develop/releases

ABACUS

Note: In ABACUS v3.5.1 or earlier, if you install ELPA from source , please add a symlink to avoid
the additional include file folder with version name: ln -s elpa/include/elpa-2021.05.
002/elpa elpa/include/elpa to help the build system find ELPA headers.

– FFTW3_DIR: Path to FFTW3.
– CEREAL_INCLUDE_DIR: Path to the parent folder of cereal/cereal.hpp. Will download from
GitHub if absent.

– Libxc_DIR: (Optional) Path to Libxc.
Note: In ABACUS v3.5.1 or earlier, Libxc built from source with Makefile is NOT supported; please
compile Libxc with CMake instead.

– LIBRI_DIR: (Optional) Path to LibRI.
– LIBCOMM_DIR: (Optional) Path to LibComm.

• Components: The values of these variables should be ‘ON’, ‘1’ or ‘OFF’, ‘0’. The default values are given below.
– ENABLE_LCAO=ON: Enable LCAO calculation. If SCALAPACK, ELPA or CEREAL is absent and only
require plane-wave calculations, the feature of calculating LCAO basis can be turned off.

– ENABLE_LIBXC=OFF: Enable Libxc to suppport variety of functionals. If Libxc_DIR is defined, EN-
ABLE_LIBXC will set to ‘ON’.

– ENABLE_LIBRI=OFF: Enable LibRI to suppport variety of functionals. If LIBRI_DIR and LIB-
COMM_DIR is defined, ENABLE_LIBRI will set to ‘ON’.

– USE_OPENMP=ON: Enable OpenMP support. Building ABACUS without OpenMP is not fully tested yet.
– BUILD_TESTING=OFF: Build unit tests.
– ENABLE_GOOGLEBENCH=OFF: Build performance tests

– ENABLE_MPI=ON: Enable MPI parallel compilation. If set to OFF, a serial version of ABACUS with PW
basis only will be compiled. Currently serial version of ABACUS with LCAO basis is not supported yet, so
ENABLE_LCAO will be automatically set to OFF.

– ENABLE_COVERAGE=OFF: Build ABACUS executable supporting coverage analysis. This feature has a
drastic impact on performance.

– ENABLE_ASAN=OFF: Build with Address Sanitizer. This feature would help detecting memory problems.
– USE_ELPA=ON: Use ELPA library in LCAO calculations. If this value is set to OFF, ABACUS can be
compiled without ELPA library.

Here is an example:

CXX=mpiicpc cmake -B build -DCMAKE_INSTALL_PREFIX=~/abacus -DELPA_DIR=~/elpa-2016.05.
↪→004/build -DCEREAL_INCLUDE_DIR=~/cereal/include

1.6 Build and Install

After configuring, build and install by:

cmake --build build -j`nproc`
cmake --install build

You can change the number after -j on your need: set to the number of CPU cores(nproc) to reduce compilation time.

1.6. Build and Install 5

ABACUS

1.7 Run

If ABACUS is installed into a custom directory using CMAKE_INSTALL_PREFIX, please add it to your environment
variable PATH to locate the correct executable. (Note: my-install-dir should be changed to the location of your
installed abacus:/home/your-path/abacus/bin/.)

export PATH=/my-install-dir/:$PATH

Please set OpenMP threads by setting environment variable:

export OMP_NUM_THREADS=1

Enter a directory containing a INPUT file. Please make sure structure, pseudo potential, or orbital files indicated by
INPUT is at the correct location.

cd abacus-develop/examples/force/pw_Si2

Use 4 MPI processes to run, for example:

mpirun -n 4 abacus

The total thread count(i.e. OpenMP per-process thread count * MPI process count) should not exceed the
number of cores in your machine.

Please refer to hands-on guide for more instructions.
Note: Some Intel CPU has a feature named Hyper-Threading(HT). This feature enables one physical core
switch fastly between two logical threads. It would benefits from I/O bound tasks: when a thread is blocked by
I/O, the CPU core can work on another thread. However, it helps little on CPU bound tasks, like ABACUS
and many other scientific computing softwares. We recommend using the physical CPU core number. To
determine if HT is turned on, execute lscpu | grep 'per core' and see if ‘Thread(s) per core’ is
2.

1.8 Container Deployment

Please note that containers target at developing and testing, but not massively parallel computing for produc-
tion. Docker has a bad support to MPI, which may cause performance degradation.

We’ve built a ready-for-use version of ABACUS with docker here. For a quick start: pull the image, prepare the data,
run container. Instructions on using the image can be accessed in Dockerfile. A mirror is available by docker pull
registry.dp.tech/deepmodeling/abacus.
We also offer a pre-built docker image containing all the requirements for development. Please refer to our Package Page.
The project is ready for VS Code development container. Please refer to Developing inside a Container. Choose Open
a Remote Window -> Clone a Repository in Container Volume in VS Code command palette,
and put the git address of ABACUS when prompted.
For online development environment, we support GitHub Codespaces: Create a new Codespace
We also support Gitpod: Open in Gitpod

1.7. Run 6

https://github.com/deepmodeling/abacus-develop/pkgs/container/abacus
https://github.com/orgs/deepmodeling/packages?repo_name=abacus-develop
https://code.visualstudio.com/docs/remote/containers#_quick-start-try-a-development-container
https://github.com/deepmodeling/abacus-develop.git
https://github.com/codespaces
https://github.com/codespaces/new?machine=basicLinux32gb&repo=334825694&ref=develop&devcontainer_path=.devcontainer%2Fdevcontainer.json&location=SouthEastAsia
https://www.gitpod.io/
https://gitpod.io/#https://github.com/deepmodeling/abacus-develop

ABACUS

1.9 Install by conda

Conda is a package management system with a separated environment, not requiring system privileges. You can refer to
DeepModeling conda FAQ for how to setup a conda environment. A pre-built ABACUS binary with all requirements
is available at conda-forge. It supports advanced features including Libxc, LibRI, and DeePKS. Conda will install the
GPU-supported version of ABACUS if a valid GPU driver is present. Please refer to the advanced installation guide for
more details.

Install
We recommend installing ABACUS in a new environment to avoid potential conflicts:
conda create -n abacus_env abacus "libblas=*=*mkl" mpich -c conda-forge

Run
conda activate abacus_env
OMP_NUM_THREADS=1 mpirun -n 4 abacus

Update
conda update -n abacus_env abacus -c conda-forge

If OpenBLAS gives warning about OpenMP threads, please install conda package "open-
blas=*=openmp*" or "libblas=*=*mkl". See switching BLAS implementation in conda.
ABACUS supports OpenMPI and MPICH variant. Install mpich or openmpi package to switch MPI
library if required.

For more details on building a conda package of ABACUS locally, please refer to the conda recipe file.
Note: The deepmodeling conda channel offers historical versions of ABACUS.

1.9.1 Developing with conda

It is possible to build ABACUS from source based on the conda environment.

conda create -n abacus_env abacus -c conda-forge
conda activate abacus_env
export CMAKE_PREFIX_PATH=$CONDA_PREFIX:$CMAKE_PREFIX_PATH

By default OpenBLAS is used; run `conda install "blas=*=mkl" mkl_fft mkl-devel -c␣
↪→conda-forge` to switch implementation.
export MKLROOT=$CONDA_PREFIX # If Intel MKL is required.

export CMAKE_PREFIX_PATH=`python -c 'import torch;print(torch.utils.cmake_prefix_path)
↪→'`:$CMAKE_PREFIX_PATH # If DEEPKS support is required;
usually expands to `$CONDA_PREFIX/lib/python3.1/site-packages/torch/share/cmake`

And, follow the instructions in Build and Install part above withou manually setting paths to dependencies. See the ad-
vanced installation guide for more features. Make sure the environment variables are set before running cmake. Possible
command: cmake -B build -DENABLE_DEEPKS=ON -DENABLE_LIBXC=ON -DENABLE_LIBRI=ON.

1.9. Install by conda 7

https://docs.deepmodeling.com/faq/conda.html
https://anaconda.org/conda-forge/abacus
https://conda-forge.org/docs/maintainer/knowledge_base.html#switching-blas-implementation
https://github.com/deepmodeling/abacus-develop/blob/develop/conda/meta.yaml
https://anaconda.org/deepmodeling/abacus

CHAPTER

TWO

TWO QUICK EXAMPLES

2.1 Running SCF Calculation

2.1.1 A quick LCAO example

ABACUS is well known for its support of LCAO (Linear Combination of Atomic Orbital) basis set in calculating periodic
condensed matter systems, so it’s a good choice to start from a LCAO example of self-consistent field (SCF) calculation.
Here, FCC MgO has been chosen as a quick start example. The default name of a structure file in ABACUS is STRU.
The STRU file for FCC MgO in a LCAO calculation is shown below:

#This is the atom file containing all the information
#about the lattice structure.

ATOMIC_SPECIES
Mg 24.305 Mg_ONCV_PBE-1.0.upf # element name, atomic mass, pseudopotential file
O 15.999 O_ONCV_PBE-1.0.upf

NUMERICAL_ORBITAL
Mg_gga_8au_100Ry_4s2p1d.orb
O_gga_8au_100Ry_2s2p1d.orb

LATTICE_CONSTANT
1.8897259886 # 1.8897259886 Bohr = 1.0 Angstrom

LATTICE_VECTORS
4.25648 0.00000 0.00000
0.00000 4.25648 0.00000
0.00000 0.00000 4.25648

ATOMIC_POSITIONS
Direct #Cartesian(Unit is LATTICE_CONSTANT)
Mg #Name of element
0.0 #Magnetic for this element.
4 #Number of atoms
0.0 0.0 0.0 0 0 0 #x,y,z, move_x, move_y, move_z
0.0 0.5 0.5 0 0 0 #x,y,z, move_x, move_y, move_z
0.5 0.0 0.5 0 0 0 #x,y,z, move_x, move_y, move_z
0.5 0.5 0.0 0 0 0 #x,y,z, move_x, move_y, move_z
O #Name of element
0.0 #Magnetic for this element.
4 #Number of atoms
0.5 0.0 0.0 0 0 0 #x,y,z, move_x, move_y, move_z
0.5 0.5 0.5 0 0 0 #x,y,z, move_x, move_y, move_z

(continues on next page)

8

ABACUS

(continued from previous page)
0.0 0.0 0.5 0 0 0 #x,y,z, move_x, move_y, move_z
0.0 0.5 0.0 0 0 0 #x,y,z, move_x, move_y, move_z

Next, the INPUT file is required, which sets all key parameters to direct ABACUS how to calculte and what to output:

INPUT_PARAMETERS
suffix MgO
ntype 2
pseudo_dir ./
orbital_dir ./
ecutwfc 100 # Rydberg
scf_thr 1e-4 # Rydberg
basis_type lcao
calculation scf # this is the key parameter telling abacus␣
↪→to do a scf calculation

The pseudopotential files of Mg_ONCV_PBE-1.0.upf and O_ONCV_PBE-1.0.upf should be provided un-
der the directory of pseudo_dir defined in INPUT (the default directory is “./”), and the orbital files
Mg_gga_8au_100Ry_4s2p1d.orb and O_gga_8au_100Ry_2s2p1d.orb under the directory of or-
bital_dir also defined in INPUT (the default directory is “./”). The pseudopotential and orbital files can be down-
loaded from the ABACUS website.
The final mandatory input file is called KPT, which sets the reciprocal space k-mesh. Below is an example:

K_POINTS
0
Gamma
4 4 4 0 0 0

After all the above input files have been set, one should be able to run the first quick example. The simplest way is to use
the command line, e.g.:

mpirun -np 2 abacus

The main output information is stored in the file OUT.MgO/running_scf.log, which starts with

WELCOME TO ABACUS v3.2

'Atomic-orbital Based Ab-initio Computation at UStc'

Website: http://abacus.ustc.edu.cn/

Version: Parallel, in development
Processor Number is 2
Start Time is Mon Oct 24 01:47:54 2022

--

READING GENERAL INFORMATION
global_out_dir = OUT.MgO/
global_in_card = INPUT

pseudo_dir =
orbital_dir =

DRANK = 1
DSIZE = 2

DCOLOR = 1

(continues on next page)

2.1. Running SCF Calculation 9

http://abacus.ustc.edu.cn/pseudo/list.htm

ABACUS

(continued from previous page)
GRANK = 1
GSIZE = 1

The esolver type has been set to : ksdft_lcao

>>
| |
| Reading atom information in unitcell: |
| From the input file and the structure file we know the number of |
| different elments in this unitcell, then we list the detail |
| information for each element, especially the zeta and polar atomic |
| orbital number for each element. The total atom number is counted. |
| We calculate the nearest atom distance for each atom and show the |
| Cartesian and Direct coordinates for each atom. We list the file |
| address for atomic orbitals. The volume and the lattice vectors |
| in real and reciprocal space is also shown. |
| |
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

......

If ABAUCS finishes successfully, the total energy will be output in OUT.MgO/running_scf.log:

--
!FINAL_ETOT_IS -7663.897267807250 eV
--

2.1.2 A quick PW example

In order to run a SCF calculation with PW (Plane Wave) basis set, one has only to change the tag basis_type from
lcao to pw in the INPUT file, and no longer needs to provide orbital files under NUMERICAL_ORBITAL in the STRU
file.
The INPUT file follows as:

INPUT_PARAMETERS
suffix MgO
ntype 2
pseudo_dir ./
ecutwfc 100 # Rydberg
scf_thr 1e-4 # Rydberg
basis_type pw # changes the type of basis set
calculation scf # this is the key parameter telling abacus␣
↪→to do a scf calculation

And the STRU file will be:

#This is the atom file containing all the information
#about the lattice structure.

ATOMIC_SPECIES
Mg 24.305 Mg_ONCV_PBE-1.0.upf # element name, atomic mass, pseudopotential file

(continues on next page)

2.1. Running SCF Calculation 10

ABACUS

(continued from previous page)
O 15.999 O_ONCV_PBE-1.0.upf

LATTICE_CONSTANT
1.8897259886 # 1.8897259886 Bohr = 1.0 Angstrom

LATTICE_VECTORS
4.25648 0.00000 0.00000
0.00000 4.25648 0.00000
0.00000 0.00000 4.25648

ATOMIC_POSITIONS
Direct #Cartesian(Unit is LATTICE_CONSTANT)
Mg #Name of element
0.0 #Magnetic for this element.
4 #Number of atoms
0.0 0.0 0.0 0 0 0 #x,y,z, move_x, move_y, move_z
0.0 0.5 0.5 0 0 0 #x,y,z, move_x, move_y, move_z
0.5 0.0 0.5 0 0 0 #x,y,z, move_x, move_y, move_z
0.5 0.5 0.0 0 0 0 #x,y,z, move_x, move_y, move_z
O #Name of element
0.0 #Magnetic for this element.
4 #Number of atoms
0.5 0.0 0.0 0 0 0 #x,y,z, move_x, move_y, move_z
0.5 0.5 0.5 0 0 0 #x,y,z, move_x, move_y, move_z
0.0 0.0 0.5 0 0 0 #x,y,z, move_x, move_y, move_z
0.0 0.5 0.0 0 0 0 #x,y,z, move_x, move_y, move_z

Use the same pseudopotential and KPT files as the above LCAO example. The final total energy will be output:

--
!FINAL_ETOT_IS -7665.688319476949 eV
--

2.2 Running Geometry Optimization

In order to run a full geometry optimization in ABACUS, the tag calculation in INPUT should be set to
cell-relax. In addition, the convergence criteria for atomics force and cell stress can be set through the tags
force_thr_ev and stress_thr, respectively. Themaximum number of ionc steps is controlled by relax_nmax.

2.2.1 A quick LCAO example

The INPUT is provided as follows:

INPUT_PARAMETERS
suffix MgO
ntype 2
nelec 0.0
pseudo_dir ./
orbital_dir ./
ecutwfc 100 # Rydberg
scf_thr 1e-4 # Rydberg
basis_type lcao

(continues on next page)

2.2. Running Geometry Optimization 11

ABACUS

(continued from previous page)
calculation cell-relax # this is the key parameter telling abacus␣
↪→to do a optimization calculation
force_thr_ev 0.01 # the threshold of the force␣
↪→convergence, in unit of eV/Angstrom
stress_thr 5 # the threshold of the stress convergence,␣
↪→in unit of kBar
relax_nmax 100 # the maximal number of ionic iteration␣
↪→steps
out_stru 1

Use the same KPT, STRU, pseudopotential, and orbital files as in the above SCF-LCAO example. The final optimized
structure can be found in STRU_NOW.cif and OUT.MgO/running_cell-relax.log.

2.2.2 A quick PW example

The INPUT is provided as follows:

INPUT_PARAMETERS
suffix MgO
ntype 2
nelec 0.0
pseudo_dir ./
ecutwfc 100 # Rydberg
scf_thr 1e-4 # Rydberg
basis_type pw
calculation cell-relax # this is the key parameter telling abacus␣
↪→to do a optimization calculation
force_thr_ev 0.01 # the threshold of the force␣
↪→convergence, in unit of eV/Angstrom
stress_thr 5 # the threshold of the stress convergence,␣
↪→in unit of kBar
relax_nmax 100 # the maximal number of ionic iteration␣
↪→steps
out_stru 1

Use the same KPT, STRU, and pseudopotential files as in the above SCF-PW examples. The final optimized structure
can be found in STRU_NOW.cif and OUT.MgO/running_cell-relax.log.

2.2. Running Geometry Optimization 12

CHAPTER

THREE

BRIEF INTRODUCTION OF THE INPUT FILES

The following files are the central input files for ABACUS. Before executing the program, please make sure these files
are prepared and stored in the working directory. Here we give some simple descriptions. For more details, users should
consult the Advanced session.

3.1 INPUT

The INPUT file contains parameters that control the type of calculation as well as a variety of settings.
Below is an example INPUT file with some of the most important parameters that need to be set:

INPUT_PARAMETERS
suffix MgO
ntype 2
pseudo_dir ./
orbital_dir ./
ecutwfc 100 # Rydberg
scf_thr 1e-4 # Rydberg
basis_type lcao
calculation scf # this is the key parameter telling abacus␣
↪→to do a scf calculation
out_chg True

The parameter list always starts with key word INPUT_PARAMETERS. Any content before INPUT_PARAMETERSwill
be ignored.
Any line starting with # or / will also be ignored.
Each parameter value is provided by specifying the name of the input variable and then putting the value after the name,
separated by one or more blank characters(space or tab). The following characters (> 150) in the same line will be
neglected.
Depending on the input variable, the value may be an integer, a real number or a string. The parameters can be given in
any order, but only one parameter should be given per line.
Furthermore, if a given parameter name appeared more than once in the input file, only the last value will be taken.

Note: if a parameter name is not recognized by the program, the program will stop with an error message.
In the above example, the meanings of the parameters are:

• suffix : the name of the system, default ABACUS
• ntype : how many types of elements in the unit cell
• pseudo_dir : the directory where pseudopotential files are provided

13

ABACUS

• orbital_dir : the directory where orbital files are provided
• ecutwfc : the plane-wave energy cutoff for the wave function expansion (UNIT: Rydberg)
• scf_thr : the threshold for the convergence of charge density (UNIT: Rydberg)
• basis_type : the type of basis set for expanding the electronic wave functions
• calculation : the type of calculation to be performed by ABACUS
• out_chg : if true, output thee charge density oon real space grid

For a complete list of input parameters, please consult this instruction.
Note: Users cannot change the filename “INPUT” to other names. Boolean paramerters such as out_chg
can be set by using True and False, 1 and 0, or T and F. It is case insensitive so that other preferences
such as true and false, TRUE and FALSE, and t and f for setting boolean values are also supported.

3.2 STRU

The structure file contains structural information about the system, e.g., lattice constant, lattice vectors, and positions of
the atoms within a unit cell. The positions can be given either in direct or Cartesian coordinates.
An example of the STRU file is given as follows :

#This is the atom file containing all the information
#about the lattice structure.

ATOMIC_SPECIES
Mg 24.305 Mg_ONCV_PBE-1.0.upf # element name, atomic mass, pseudopotential file
O 15.999 O_ONCV_PBE-1.0.upf

NUMERICAL_ORBITAL
Mg_gga_8au_100Ry_4s2p1d.orb
O_gga_8au_100Ry_2s2p1d.orb

LATTICE_CONSTANT
1.8897259886 # 1.8897259886 Bohr = 1.0 Angstrom

LATTICE_VECTORS
4.25648 0.00000 0.00000
0.00000 4.25648 0.00000
0.00000 0.00000 4.25648

ATOMIC_POSITIONS
Direct #Cartesian(Unit is LATTICE_CONSTANT)
Mg #Name of element
0.0 #Magnetic for this element.
4 #Number of atoms
0.0 0.0 0.0 0 0 0 #x,y,z, move_x, move_y, move_z
0.0 0.5 0.5 0 0 0 #x,y,z, move_x, move_y, move_z
0.5 0.0 0.5 0 0 0 #x,y,z, move_x, move_y, move_z
0.5 0.5 0.0 0 0 0 #x,y,z, move_x, move_y, move_z
O #Name of element
0.0 #Magnetic for this element.
4 #Number of atoms
0.5 0.0 0.0 0 0 0 #x,y,z, move_x, move_y, move_z
0.5 0.5 0.5 0 0 0 #x,y,z, move_x, move_y, move_z

(continues on next page)

3.2. STRU 14

ABACUS

(continued from previous page)
0.0 0.0 0.5 0 0 0 #x,y,z, move_x, move_y, move_z
0.0 0.5 0.0 0 0 0 #x,y,z, move_x, move_y, move_z

Note: users may choose a different name for their structure file using the keyword stru_file. The order
of the pseudopotential file list and the numerical orbital list (if LCAO is applied) MUST be consistent with
that of the atomic type given in ATOMIC_POSITIONS.

For a more detailed description of STRU file, please consult here.

3.3 KPT

This file contains information of the kpoint grid setting for the Brillouin zone sampling.
An example of the KPT file is given below:

K_POINTS
0
Gamma
4 4 4 0 0 0

Note: users may choose a different name for their k-point file using keyword kpoint_file
For a more detailed description, please consult here.

• The pseudopotential files
Norm-conserving pseudopotentials are used in ABACUS, in the UPF file format.The filename of each element’s
pseudopotential needs to be specified in the STRU file, together with the directory of the pseudopotential files
unless they are already present in the working directory.
More information on pseudopotentials is given here.

• The numerical orbital files
This part is only required in LCAO calculations. The filename for each element’s numerical orbital basis needs to
be specified in the STRU file, together with the directory of the orbital files unless they are already present in the
working directory. ABACUS provides numerical atomic basis sets of different accuracy levels for most elements
commonly used. Users can download these basis sets from the website. Moreover, users can generate numerical
atomic orbitals by themselves, and the procedure is provided in this short introduction.

3.3. KPT 15

http://abacus.ustc.edu.cn/pseudo/list.htm

CHAPTER

FOUR

BRIEF INTRODUCTION OF THE OUTPUT FILES

The following files are the central output files for ABACUS. After executing the program, you can obtain a log file
containing the screen output, more detailed outputs are stored in the working directory OUT.suffix (Default one is
OUT.ABACUS). Here we give some simple descriptions.

4.1 INPUT

Different from INPUT given by the users, OUT.suffix/INPUT contains all parameters in ABACUS.
Note: OUT.suffix/INPUT contain the initial default of ABACUS instead of the real parameters used in
calculations. If you want to figure out the real parameters used in calculations, you can open OUT.suffix/
runing_scf.log and research corresponding parameter you are interested.

For a complete list of input parameters, please consult this instruction.

4.2 running_scf.log

running_scf.log contains information on nearly all function calls made during the execution of ABACUS.

4.3 KPT

This file contains the information of all generated k-points, as well as the list of k-points actually used for calculations
after considering symmetry.

4.4 istate.info

This file includes the energy levels computed for all k-points. From left to right, the columns represent: energy level
index, eigenenergy, and occupancy number.
Below is an example istate.info:

BAND Energy(ev) Occupation Kpoint = 1 ␣
↪→ (0 0 0)

1 -5.33892 0.03125
2 6.68535 0.0312006
3 6.68535 0.0312006

(continues on next page)

16

ABACUS

(continued from previous page)
4 6.68535 0.0312006
5 9.41058 0

4.5 STRU_SIMPLE.cif

ABACUS generates a .cif format structure file based on the input file STRU, facilitating users to visualize with com-
monly used software. STRU_READIN_ADJUST.cif is the structure after considering symmetry.

4.6 warning.log

The file contains all the warning messages generated during the ABACUS run.

4.5. STRU_SIMPLE.cif 17

CHAPTER

FIVE

ADVANCED INSTALLATION OPTIONS

This guide helps you install ABACUS with advanced features. Please make sure to read the easy-installation guide before.

5.1 Build with Libxc

ABACUS use exchange-correlation functionals by default. However, for some functionals (such as HSE hybrid func-
tional), Libxc is required.
Dependency: Libxc >= 5.1.7 .

Note: Building Libxc from source with Makefile does NOT support using it in CMake here. Please compile
Libxc with CMake instead.

If Libxc is not installed in standard path (i.e. installed with a custom prefix path), you can set Libxc_DIR to the
corresponding directory.

cmake -B build -DLibxc_DIR=~/libxc

5.2 Build with DeePKS

If DeePKS feature is required for DeePKS-kit, the following prerequisites and steps are needed:
• C++ compiler, supporting C++14 (GCC >= 5 is sufficient)
• CMake >= 3.18
• LibTorch with cxx11 ABI supporting CPU
• Libnpy

cmake -B build -DENABLE_DEEPKS=1 -DTorch_DIR=~/libtorch/share/cmake/Torch/ -Dlibnpy_
↪→INCLUDE_DIR=~/libnpy/include

CMake will try to download Libnpy if it cannot be found locally.

18

https://tddft.org/programs/libxc/
https://github.com/deepmodeling/deepks-kit
https://pytorch.org/
https://github.com/llohse/libnpy/

ABACUS

5.3 Build with DeePMD-kit

Note: This part is only required if you want to load a trained DeeP Potential and run molecular dynamics
with that. To train the DeeP Potential with DP-GEN, no extra prerequisite is needed and please refer to this
page for ABACUS interface with DP-GEN.

If the Deep Potential model is employed in Molecule Dynamics calculations, the following prerequisites and steps are
needed:

• DeePMD-kit
• TensorFlow

cmake -B build -DDeePMD_DIR=~/deepmd-kit -DTensorFlow_DIR=~/tensorflow

deepmd_c/deepmd_cc and tensorflow_cc libraries would be called according to DeePMD_DIR
and TensorFlow_DIR, which is showed in detail in this page.

5.4 Build with LibRI and LibComm

The new EXX implementation depends on two external libraries:
• LibRI
• LibComm

These two libraries are added as submodules in the deps folder. Set -DENABLE_LIBRI=ON to build with these two
libraries.
If you prefer using manually downloaded libraries, provide -DLIBRI_DIR=${path to your LibRI folder}
-DLIBCOMM_DIR=${path to your LibComm folder}.

5.5 Build Unit Tests

To build tests for ABACUS, define BUILD_TESTING flag. You can also specify path to local installation of Googletest
by setting GTEST_DIR flags. If not found in local, the configuration process will try to download it automatically.

cmake -B build -DBUILD_TESTING=1

After building and installing, unit tests can be performed with ctest.
To run a subset of unit test, use ctest -R <test-match-pattern> to perform tests with name matched by given
pattern.

5.3. Build with DeePMD-kit 19

http://abacus.deepmodeling.com/en/latest/advanced/interface/dpgen.html
http://abacus.deepmodeling.com/en/latest/advanced/interface/dpgen.html
https://github.com/deepmodeling/deepmd-kit
https://www.tensorflow.org/
https://github.com/deepmodeling/deepmd-kit/blob/master/doc/inference/cxx.md
https://github.com/abacusmodeling/LibRI
https://github.com/abacusmodeling/LibComm
https://github.com/deepmodeling/abacus-develop/tree/develop/deps
https://github.com/google/googletest

ABACUS

5.6 Build Performance Tests

To build performance tests for ABACUS, define ENABLE_GOOGLEBENCH flag. You can also specify the path to a local
installation of Google Benchmark by setting BENCHMARK_DIR flags. If not found locally, the configuration process will
try to download it automatically.

cmake -B build -DENABLE_GOOGLEBENCH=1

Google Benchmark requires Google Test to build and run the tests. When setting ENABLE_GOOGLEBENCH to ON,
BUILD_TESTING is automatically enabled. After building and installing, performance tests can be executed with
ctest.

5.7 Build with CUDA support

5.7.1 Extra prerequisites

• CUDA-Toolkit
To build NVIDIA GPU support for ABACUS, define USE_CUDA flag. You can also specify path to local installation of
CUDA Toolkit by setting CMAKE_CUDA_COMPILER flags.

cmake -B build -DUSE_CUDA=1 -DCMAKE_CUDA_COMPILER=${path to cuda toolkit}/bin/nvcc

5.8 Build math library from source

Note: This flag is enabled by default. It will get better performance than the standard implementation on
gcc and clang. But it will be disabled when using Intel Compiler since the math functions will get
wrong results and the performance is also unexpectly poor.

To build math functions from source code, instead of using c++ standard implementation, define USE_ABACUS_LIBM
flag.
Currently supported math functions: sin, cos, sincos, exp, cexp

cmake -B build -DUSE_ABACUS_LIBM=1

5.9 Build ABACUS with make

Note: We suggest using CMake to configure and compile.
To compile the ABACUS program using legacy make, users need to specify the location of the compilers, headers and
libraries in source/Makefile.vars:

This is the Makefile of ABACUS API
#==
Users set
#==
CXX = mpiicpc
mpiicpc: compile intel parallel version

(continues on next page)

5.6. Build Performance Tests 20

https://github.com/google/benchmark.git
https://developer.nvidia.com/cuda-toolkit

ABACUS

(continued from previous page)
icpc: compile intel sequential version
make: ELPA_DIR, ELPA_INCLUDE_DIR, CEREAL_DIR must also be set.
make pw: nothing need to be set except LIBXC_DIR
#
mpicxx: compile gnu parallel version
g++: compile gnu sequential version
make: FFTW_DIR, OPENBLAS_LIB_DIR, SCALAPACK_LIB_DIR, ELPA_DIR, ELPA_INCLUDE_DIR,␣
↪→CEREAL_DIR must also be set.
make pw: FFTW_DIR, OPENBLAS_LIB_DIR must be set.

GPU = OFF #We do not support GPU yet
OFF: do not use GPU
CUDA: use CUDA
#==

#-------------------- FOR INTEL COMPILER ----------------------------
ELPA_DIR should contain an include folder and lib/libelpa.a
CEREAL_DIR should contain an include folder.
#--

ELPA_DIR = /usr/local/include/elpa-2021.05.002
ELPA_INCLUDE_DIR = ${ELPA_DIR}/elpa

CEREAL_DIR = /usr/local/include/cereal

##------------------- FOR GNU COMPILER ------------------------------
FFTW_DIR should contain lib/libfftw3.a.
OPENBLAS_LIB_DIR should contain libopenblas.a.
SCALAPACK_LIB_DIR should contain libscalapack.a
All three above will only be used when CXX=mpicxx or g++
ELPA_DIR should contain an include folder and lib/libelpa.a
CEREAL_DIR should contain an include folder.
##---

FFTW_DIR = /public/soft/fftw_3.3.8
OPENBLAS_LIB_DIR = /public/soft/openblas/lib
SCALAPACK_LIB_DIR = /public/soft/openblas/lib

ELPA_DIR = /public/soft/elpa_21.05.002
ELPA_INCLUDE_DIR = ${ELPA_DIR}/include/elpa-2021.05.002

CEREAL_DIR = /public/soft/cereal

##------------------- OPTIONAL LIBS ---------------------------------
To use DEEPKS: set LIBTORCH_DIR and LIBNPY_DIR
To use LIBXC: set LIBXC_DIR which contains include and lib/libxc.a (>5.1.7)
To use DeePMD: set DeePMD_DIR and TensorFlow_DIR
To use LibRI: set LIBRI_DIR and LIBCOMM_DIR
##---

LIBTORCH_DIR = /usr/local
LIBNPY_DIR = /usr/local

(continues on next page)

5.9. Build ABACUS with make 21

ABACUS

(continued from previous page)
LIBXC_DIR = /public/soft/libxc

DeePMD_DIR = ${deepmd_root}
TensorFlow_DIR = ${tensorflow_root}

LIBRI_DIR = /public/software/LibRI
LIBCOMM_DIR = /public/software/LibComm

##---
NP = 14 # It is not supported. use make -j14 or make -j to parallelly compile
DEBUG = OFF
Only for developers
ON: use gnu compiler and check segmental defaults
OFF: nothing
#==

For example, below is a case where the Intel C++ compiler, Intel MPI and CEREAL are used, along with Intel MKL
library. The file Makefile.vars can be set as follows:

CXX = mpiicpc #(or CXX = icpc)
ELPA_DIR = /public/soft/elpa_21.05.002
ELPA_INCLUDE_DIR = ${ELPA_DIR}/include/elpa-2021.05.002
CEREAL_DIR = /public/soft/cereal

When CXX=mpiicpc, a parallel version will be compiled. When CXX=icpc, a sequential version will be compiled.
Another example is where the Gnu C++ compiler, MPICH, OPENBLAS, ScaLAPACK, ELPA and CEREAL are used:

CXX = mpicxx/g++
FFTW_DIR = /public/soft/fftw_3.3.8
OPENBLAS_LIB_DIR = /public/soft/openblas/lib
SCALAPACK_LIB_DIR = /public/soft/openblas/lib
ELPA_DIR = /public/soft/elpa_21.05.002
ELPA_INCLUDE_DIR = ${ELPA_DIR}/include/elpa-2021.05.002
CEREAL_DIR = /public/soft/cereal

When CXX=mpicxx, a parallel version will be compiled. When CXX=g++, a sequential version will be compiled.
Except modifying Makefile.vars, you can also directly use

make CXX=mpiicpc ELPA_DIR=/public/soft/elpa_21.05.002 \
ELPA_INCLUDE_DIR=${ELPA_DIR}/include/elpa-2021.05.002 \
CEREAL_DIR=/public/soft/cereal

ABACUS now support full version and pw version. Use make or make abacus to compile full version which supports
LCAO calculations. Use make pw to compile pw version which only supports pw calculations. For pw version, make
pw CXX=mpiicpc, you do not need to provide any libs. For make pw CXX=mpicxx, you need provide FFTW_DIR
and OPENBLAS_LIB_DIR.
Besides, libxc and deepks are optional libs to compile abacus. They will be used when LIBXC_DIR is defined like

LIBXC_DIR = /public/soft/libxc

or LIBTORCH_DIR and LIBNPY_DIR like

LIBTORCH_DIR = /usr/local
LIBNPY_DIR = /usr/local

5.9. Build ABACUS with make 22

ABACUS

After modifying the Makefile.vars file, execute make or make -j12 to build the program.
After the compilation finishes without error messages (except perhaps for some warnings), an executable program
ABACUS.mpi will be created in directory bin/.

5.9.1 Add Libxc Support

The program compiled using the above instructions do not link with LIBXC and use exchange-correlation functionals as
written in the ABACUS program. However, for some functionals (such as HSE hybrid functional), LIBXC is required.
To compile ABACUS with LIBXC, you need to define LIBXC_DIR in the file Makefile.vars or use

make LIBXC_DIR=/pulic/soft/libxc

directly.

5.9.2 Add DeePKS Support

To compile ABACUS with DEEPKS, you need to define LIBTORCH_DIR and LIBNPY_DIR in the file Makefile.
vars or use

make LIBTORCH_DIR=/opt/libtorch/ LIBNPY_DIR=/opt/libnpy/

directly.

5.9.3 Add DeePMD-kit Support

Note: This part is only required if you want to load a trained DeeP Potential and run molecular dynamics
with that. To train the DeeP Potential with DP-GEN, no extra prerequisite is needed and please refer to this
page for ABACUS interface with DP-GEN.

To compile ABACUS with DeePMD-kit, you need to define DeePMD_DIR and TensorFlow_DIR in the file
Makefile.vars or use

make DeePMD_DIR=~/deepmd-kit TensorFlow_DIR=~/tensorflow

directly.
deepmd_c/deepmd_cc and tensorflow_cc libraries would be called according to DeePMD_DIR
and TensorFlow_DIR, which is showed in detail in this page.

5.9.4 Add LibRI Support

To use new EXX, you need two libraries: LibRI and LibComm and need to define LIBRI_DIR and LIBCOMM_DIR
in the file Makefile.vars or use

make LIBRI_DIR=/public/software/LibRI LIBCOMM_DIR=/public/software/LibComm

directly.

5.9. Build ABACUS with make 23

http://abacus.deepmodeling.com/en/latest/advanced/interface/dpgen.html
http://abacus.deepmodeling.com/en/latest/advanced/interface/dpgen.html
https://github.com/deepmodeling/deepmd-kit/blob/master/doc/inference/cxx.md
https://github.com/abacusmodeling/LibRI
https://github.com/abacusmodeling/LibComm

CHAPTER

SIX

RUNNING SCF

6.1 Initializing SCF

Good initializing would abate the number of iteration steps in SCF. Charge density should be initialed for constructing
the initial hamiltonian operator.
In PW basis, wavefunction should be initialized for iterate diagonalization method. In LCAO basis, wavefunction can be
read to calculate initial charge density. The wavefunction itself does not have to be initialized.

6.1.1 Charge Density

init_chg is used for choosing the method of charge density initialization.
• atomic : initial charge density by atomic charge density from pseudopotential file under keyword PP_RHOATOM
• file : initial charge density from files produced by previous calculations with out_chg 1.

6.1.2 Wave function

init_wfc is used for choosing the method of wavefunction coefficient initialization.
When basis_type=pw, setting of random and atomic are supported. Atomic wave function is read from pseu-
dopotential file under keyword PP_PSWFC, if setting is atomic and number of band of atomic wavefunction less than
nbands in INPUT file, the extra bands will be initialed by random.
When basis_type=lcao, we further support reading of initial wavefunction by setting init_wfc to file. In
LCAO code, wave function is used to initialize density matrix and real-space charge density. For such purpose, a file
containing wavefunction must be prepared. Such files can be generated from previous calculations with out_wfc_lcao
1.

6.2 Constructing the Hamiltonian

6.2.1 Exchange-Correlation Functionals

In our package, the XC functional can be set explicitly using the dft_functional keyword in INPUT file. If
dft_functional is not specified, ABACUS will use the xc functional indicated in the pseudopotential file.
Several common functionals are implemented in ABACUS, such as PZ and PBE. Users can check out this file for a
complete list of functionals implemented in ABACUS. Furthermore, if ABACUS is compiled with LIBXC, we also
support all the LDA, GGA and meta-GGA functionals provided therein.

24

ABACUS

Here, we use a simple example calculation for illustration.
1. Default setting:

In the original INPUT file, there is no specification of the dft_functional keyword. As a result, we use the
default option, that is to use the xc functional in the pseudopotential file, Si.pz-vbc.UPF. We can take a look
at the first few lines of the <PP_HEADER> section from the pseudopotential file:

<PP_HEADER>
0 Version Number
Si Element
NC Norm - Conserving pseudopotential

F Nonlinear Core Correction
SLA PZ NOGX NOGC PZ Exchange-Correlation functional

From the line commented ‘Exchange-Correlation functional’, we see that this pseudopotential is generated using
PZ functional. As a result, if we run ABACUS with the original setting, PZ functional will be used.

Note : for systems with multiple elements, if no dft_functional is specified, users should make
sure that all pseudopotentials are using the same functional. Otherwise, the type of xc functional should
be specified explicitly.

2. Using PBE
On the other hand, users might also explicitly specify the xc functional through dft_functional parameter.
For example, to use PBE functional, add the following line to INPUT file and rerun the calculation:

dft_functional PBE

3. More functionals from LIBXC
ABACUS has its own implementation of the PBE functional as well as a few others, but our list is far from com-
prehensive. However, if ABACUS is compiled with LIBXC, we also support all the LDA, GGA and meta-GGA
functionals provided therein.
For this part, users should compile the ABACUS code with LIBXC linked (version 5.1.7 or higher).
To use SCAN functional, make the following modification to the INPUT file:

dft_functional SCAN

Note that in the case of PBE and SCAN, we are using ‘short-hand’ names to represent the entire functional, which is
made up of individual exchange and correlation components. A complete list of ‘short-hand’ expressions supported
by ABACUS can be found in source code.
Apart from the ‘short-hand’ names, ABACUS also allow supplying exchange-correlation functionals as combina-
tions of LIBXC keywords for functional components, joined by plus sign, for example, setting:

dft_functional LDA_X_YUKAWA+LDA_C_1D_CSC

means we are using the short-range Yukawa attenuated exchange along with the Casula, Sorella & Senatore LDA
correlation functional.
The list of LIBXC keywords can be found on its website.

4. Temperature-dependent functional
In ABACUS, we provide temperature-dependent functionals through LIBXC. For such functionals, the keyword
xc_temperature (unit is Rydberg) is used to specify the temperature, such as the following:

dft_functional LDA_XC_CORRKSDT
xc_temperature 10

6.2. Constructing the Hamiltonian 25

https://github.com/deepmodeling/abacus-develop/tree/develop/examples/scf/lcao_Si2
https://www.tddft.org/programs/libxc/functionals/

ABACUS

5. Hybrid functional
ABACUS supports functionals with exact Hartree-Fock exchange in LCAO basis set only. The old INPUT pa-
rameter exx_hybrid_type for hybrid functionals has been absorbed into dft_functional. Options are hf
(pure Hartree-Fock), pbe0(PBE0), hse, and scan0(SCAN0) (Note: in order to use HSE or SCAN0 functional,
LIBXC is required). Note also that only HSE has been tested while other hybrid functionals have NOT been fully
tested yet, and the maximum parallel cpus for running exx is N^4, with N being the number of atoms.
More information on the hybrid functional can be found from the section Exact Exchange in the list of input variables
for more information.
An example HSE calculation is provided in this directory. Apart from the input files (INPUT, STRU, KPT),
we further provide two files: running_scf.log_ref and log_ref, which contains reference for running_scf.log and
standard output from the program, respectively.

6.2.2 DFT+U

Conventional functionals, e.g., L(S)DA andGGAs, encounter failures in strongly correlated systems, usually characterized
by partially filled d/f shells. These include transition metals ™ and their oxides, rare-earth compounds, and actinides,
to name a few, where L(S)DA/GGAs typically yield quantitatively or even qualitatively wrong results. To address this
failure, an efficient and successful method named DFT+U, which inherits the efficiency of L(S)DA/GGA but gains the
strength of the Hubbard model in describing the physics of strongly correlatedsystems, has been developed.
Now the DFT+U method is accessible in ABACUS. The details of the DFT+U method could be found in this paper.
It should be noted that the DFT+U works only within the NAO scheme, which means that the value of the keyword
basis_typemust be lcao when DFT+U is called. To turn on DFT+U, users need to set the value of the dft_plus_u
keyword in the INPUT file to be 1. All relevant parmeters used in DFT+U calculations are listed in theDFT+U correction
part of the list of keywords.
Examples of DFT+U calculations are provided in this directory.

6.3 Solving the Hamiltonian

6.3.1 Explicit Diagonalization

Method of explicit solving KS-equation can be chosen by variable “ks_solver” in INPUT file.
When “basis_type = pw”, ks_solver can be cg, bpcg or dav. The bpcg method only supports K-point parallelism
currently. The default setting cg is recommended, which is band-by-band conjugate gradient diagonalization method.
There is a large probability that the use of setting of dav , which is block Davidson diagonalization method, can be tried
to improve performance.
When “basis_type = lcao”, ks_solver can be genelpa or scalapack_gvx. The default setting genelpa is
recommended, which is based on ELPA (EIGENVALUE SOLVERS FOR PETAFLOP APPLICATIONS) (https://elpa.
mpcdf.mpg.de/) and the kernel is auto choosed by GENELPA(https://github.com/pplab/GenELPA), usually faster than
the setting of “scalapack_gvx”, which is based on ScaLAPACK(Scalable Linear Algebra PACKage)

6.3. Solving the Hamiltonian 26

https://github.com/deepmodeling/abacus-develop/tree/develop/examples/hse/lcao_Si2
https://doi.org/10.1063/5.0090122
https://github.com/deepmodeling/abacus-develop/tree/develop/examples/dft_plus_u
https://elpa.mpcdf.mpg.de/
https://elpa.mpcdf.mpg.de/
https://github.com/pplab/GenELPA

ABACUS

6.3.2 Stochasic DFT

We support stochastic DFT calculation (SDFT) or mixed stochastic-deterministic DFT (MDFT) with plane-wave basis
[Phys. Rev. B 106, 125132 (2022)]. Different from traditional KSDFT with the explicit diagonalization method, SDFT
and MDFT calculate physical quantities with trace of the corresponding operators. The advantages of SDFT and MDFT
compared to the traditional KSDFT are the ability to simulate larger sizes and higher temperatures. In our package, SDFT
and MDFT can be used by setting the esolver_type parameter to sdft for SCF calculations or MD calculations.
To start with, you can refer to two examples and an explanation of the input variables.
When we have a hamiltonian, the electronic density can be calculated with:
ρ(r) = Tr[f(Ĥ)rr],
where the Fermi-Dirac function f(Ĥ) = 1

1+exp(Ĥ−µ
kT)

and it can be calculated with the Chebyshev expansion. Here we
only support the “fd” or “fermi-dirac” smearing_method, the parameter smearing_sigma is equal the tempera-
ture T (in Ry) and nche_sto represents the order of the expansion.
For physical quantities represented by operator Ô, SDFT calculates its trace with:

Tr[Ô] =
∑Nχ

i=1 χiÔχi,
while MDFT calculates the trace as:
Tr[Ô] =

∑Nφ

n=1 ϕnÔϕn +
∑Nχ

i=1 χ̃iÔχ̃i,
where {χ̃i} are obtaiend by projecting stochastic orbitals onto the subspace orthogonal to KS orbitals {ϕn}:

χ̃i = χi −
∑Nφ

n=1 ϕn|χiϕn.
Here the number of KS orbitals Nϕ is controlled by the parameter nbands while the number of stochastic orbitals Nχ

is controlled by nbands_sto.
Besides, although SDFT does not diagonalize the hamiltonian, it can also caluclate DOS and electronic conductivities
with parameters out_dos and cal_cond separately.

6.4 Converging SCF

As in any non-linear systems, numerical instabilities during SCF iterations may lead to nonconvergence. In ABACUS,
we offer the following options to facilitate SCF convergence.

6.4.1 Charge Mixing

In ABACUS, KS-DFT is solved by self-consistent field (SCF) iteration method. By mixing the electron density with that
obtained from previous steps, numerical instabilities can be ameliorated while also accelerating convergence. ABACUS
offers several mixing schemes, and users may make a selection by adjusting the mixing_type keyword in INPUT file.
For each of the mixing types, we also provide variables for controlling relevant parameters, including mix-
ing_ndim, mixing_type, mixing_beta, mixing_gg0, mixing_beta_mag, mixing_gg0_mag, mix-
ing_gg0_min, mixing_angle.
mixing_ndim is the mixing dimensions in DIIS (broyden or pulay) mixing. Gerenally, a larger mixing_ndim leads
to a better convergence. the default choice mixing_ndim=8 should work fine in most cases. For mixing_type, the
default choice is broyden, which is slightly better than Pulay typically. Besides that, a large mixing_beta means
a larger change in electron density for each SCF step. For well-behaved systems, a larger mixing_beta leads to faster
convergence. However, for some difficult cases, a smaller mixing_beta is preferred to avoid numerical instabilities.

6.4. Converging SCF 27

https://doi.org/10.1103/PhysRevB.106.125132
https://github.com/deepmodeling/abacus-develop/tree/develop/examples/stochastic

ABACUS

For non-spin-polarized calculations, the default choices usually achieve convergence. If convergence issue arises in metal-
lic systems, you can try different value of Kerker preconditioning mixing_gg0 and mixing_gg0_min, and try to reduce
mixing_beta, which is 0.8 defaultly for nspin=1.
For magnetic calculations, mixing_beta_mag and mixing_gg0_mag are activated. Considering collinear calcula-
tions, you can rely on the default value for most cases. If convergence issue arises, you can try to reduce mixing_beta
and mixing_beta_mag together. For non-collinear calculations, tradtional broyden usually works, especially for a
given magnetic configuration. If one is not interested in the energies of a given magnetic configuration but wants to deter-
mine the ground state by relaxing the magnetic moments’ directions, the standard Broyden mixing algorithm sometimes
fails to find the correct magnetic configuration. If so, we can set mixing_angle=1.0, which is a promising mixing method
proposed by J. Phys. Soc. Jpn. 82 (2013) 114706.
An example showcasing different charge mixing methods can be found in our repository. Four INPUT files are provided,
with description given in README.
As for DFT+U calculations, where the hamiltonian is not only dependent on charge density, but also dependent on density
matrix. You can try mixing_restart>0 and mixing_dmr=1 to improve convergence. For case extremely hard to
converge, you can use so-called U-Ramping method by setting a finite positive uramping with mixing_restart>0
and mixing_dmr=1.

6.4.2 Smearing

Thermal smearing is an efficient tool for accelerating SCF convergence by allowing fractional occupation of molecular
orbitals near the band edge. It is important for metallic systems.
In ABACUS, we provide a few smearing methods, which can be controlled using the keyword smearing_method. We
also provide keyword smearing_sigma or smearing_sigma_temp to control the energy range of smearing. A
larger value of smearing sigma leads to a more diffused occupation curve.

Note : The two keywords smearing_sigma and smearing_sigma_temp should not be used con-
currently.

We provide an example showing the importance of smearing in our repository. Two INPUT fiels rae provided, with
description given in README.

6.5 Accelerating the Calculation

In ABACUS, we provide a few methods for accelerating the calculation. The parameters are usually set as default for
calculations where there is not extreme concern for efficiency, as some of them may produce numerical issues under
certain circumstances. In short, methods in this section should be used with care. It is better to calibrate the results
against the default setting.

6.5.1 K-point Parallelization

In ABACUS, we offer k-point parallelization for calculations with PW basis, which should increase the efficiency when a
large k-point mesh is used.
To use k-point parallelization, users may set keyword kpar to be larger than 1.

Note: It has been observed that k-point parallelization cannot work in conjunction with Davidson diagonal-
ization.

6.5. Accelerating the Calculation 28

https://github.com/deepmodeling/abacus-develop/tree/develop/examples/charge_mixing/pw_Al
https://github.com/deepmodeling/abacus-develop/tree/develop/examples/smearing/lcao_fe

ABACUS

6.5.2 K-point Symmetry

Inclusion of k-point symmetry helps increasing the efficiency of calculations by reducing the effective number of k-points
used. To turn on k-point symmetry, users may set keyword symmetry to be 1.

Note: In ABACUS we only support point-group symmetry but not space-group symmetry.

6.5.3 Accelerating Grid Integration

For LCAO calculation, the matrix elements of the local potential is evaluated using grid integration. In grid integration,
we group real-space FFT grid points into boxes of dimension bx * by * bz, and then proceed with the boxes as the basis
unit of calculation.
Setting bx, by, bz to be values other than default might help with the efficiency of grid integration.

Note: the choice of bx, by, bz should be integer factors of the dimension of the real space FFT grid in each
direction.

6.5.4 Low Dimension Materials

In grid integration, we chose to parallelize the grid points along the z direction. Therefore, when using LCAO calcula-
tion for low dimension materials, it is recommended to put the material more evenly in z direction to avoid imbalanced
workload on different MPI threads.
Namely, when calculating 2D materials, it is better to put the material in xz or yz direction; while for 1D materials, it is
better to align the material with the z direction.

6.6 SCF in Complex Environments

6.6.1 Implicit Solvation Model

Solid-liquid interfaces are ubiquitous in nature and frequently encountered and employed in materials simulation. The
solvation effect should be taken into account in first-principles calculations of such systems so as to obtain accurate pre-
dictions.
Implicit solvation model is a well-developed method to deal with solvation effects, which has been widely used in finite
and periodic systems. This approach treats the solvent as a continuous medium instead of individual “explicit” solvent
molecules, which means that the solute embedded in an implicit solvent, and the average over the solvent degrees of
freedom becomes implicit in the properties of the solvent bath. Compared to the “explicit” method, such implicit solvation
model can provide qualitatively correct results with much less computational cost, which is particularly suited for large
and complex systems. The implicit solvation model implemented in ABACUS follows the methodology developed by
Mathew, Sundararaman, Letchworth-Weaver, Arias, and Hennig in 2014.
Input parameters that control the implicit solvation model are listed as follows with detailed explaination and recom-
mended values provided on this webpage:

INPUT_PARAMETERS
imp_sol 1
eb_k 80
tau 0.000010798
sigma_k 0.6
nc_k 0.00037

Example of running DFT calculation with the implicit solvation model is provided in this directory.

6.6. SCF in Complex Environments 29

https://aip.scitation.org/doi/10.1063/1.4865107
https://abacus.deepmodeling.com/en/latest/advanced/input_files/input-main.html#implicit-solvation-model
https://github.com/deepmodeling/abacus-develop/tree/develop/examples/implicit_solvation_model/Pt-slab

ABACUS

6.6.2 External Electric Field

A saw-like potential simulating an electric field can be added to the bare ionic potential, which is a simplified simulation
to the field-effect measurements, in which the system is separated from the gate electrode by a dielectric such as silicon
oxide.
Whether to apply the external field is controlled via the keyword efield_flag in INPUT (setting to 1 to turn on the
field). Related keywords that control the external field are listed as follows with detailed explaination provided here:

INPUT_PARAMETERS
efield_flag 1
efield_dir 2
efield_pos_max 0.5
efield_pos_dec 0.1
efield_amp 0.001

Example of running DFT calculation with added external electric field is provided in this directory.

6.6.3 Dipole Correction

A dipole correction can be added to the bare ionic potential, which can compensate for the artificial dipole field within
the context of a periodic supercell calculation. The dipole correction implemented in ABACUS follows the methodology
proposed by Bengtsson in 1999. This correction must be used ONLY in a slab geometry, for surface calculations, with the
discontinuity FALLING IN THE EMPTY SPACE. Note that the common input parameters shared between the external
electric field and dipole correction, with detailed explaination provided here. The following keywords settings add dipole
correction only without applying any external electric field:

INPUT_PARAMETERS
efield_flag 1
dip_cor_flag 1
efield_dir 2
efield_pos_max 0.5
efield_pos_dec 0.1
efield_amp 0

While The external electric field and dipole correction can also be added together to the bare ionic potential as follows:

INPUT_PARAMETERS
efield_flag 1
dip_cor_flag 1
efield_dir 2
efield_pos_max 0.5
efield_pos_dec 0.1
efield_amp 0.001

Examples of running DFT calculations with dipole correction are provided in this directory. There are two input files,
where INPUT1 considers only the dipole correction without no applied external field, while INPUT2 considers the dipole
correction under an applied external field.
To run any of the two cases, users may enter the directory, copy the corresponding input file to INPUT, and run ABACUS.

6.6. SCF in Complex Environments 30

https://abacus.deepmodeling.com/en/latest/advanced/input_files/input-main.html#electric-field-and-dipole-correction
https://github.com/deepmodeling/abacus-develop/tree/develop/examples/electric_field/Pt-slab
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.59.12301
https://abacus.deepmodeling.com/en/latest/advanced/input_files/input-main.html#electric-field-and-dipole-correction
https://github.com/deepmodeling/abacus-develop/tree/develop/examples/dipole_correction/Pt-slab

ABACUS

6.6.4 Compensating Charge

Modeling a constant-potential electronchemcial surface reaction requires adjustment of electron numbers in a simulation
cell. At the mean time, we need to maintain the supercell’s neutrality due to the periodic boundary condition. A distribu-
tion of compensating charge thus needs to be implemented in the vacuum region of surface models when extra electrons
are added/extracted from the system.
The compensating charge implemented in ABACUS follows the methodology developed by Brumme, Calandra, and
Mauri in 2014. Input parameters that control the compensating charge are listed as follows with detailed explaination
provided here:

INPUT_PARAMETERS
gate_field 1
efield_dir 2
zgate 0.5
block 1
block_down 0.45
block_up 0.55
block_height 0.1

Example of running DFT calculation with the compensating charge is provided in this directory.

6.6.5 Van-der-Waals Correction

Conventional DFT functionals often suffer from an inadequate treatment of long-range dispersion, or Van der Waals
(VdW) interactions. In order to describe materials where VdW interactions are prominent, one simple and popular ap-
proach is to add a Lennard-Jones type term. The resulting VdW-corrected DFT has been proved to be a very effective
method for description of both short-range chemical bonding and long-range dispersive interactions.
Currently ABACUS provides threeGrimmeDFT-Dmethods, includingD2, D3(0) andD3(BJ), to describe Van derWaals
interactions. Among them, the D3 method has been implemented in ABACUS based on the dftd3 program written by
Stefan Grimme, Stephan Ehrlich and Helge Krieg.
To use VdW-correction, users need to supply value to the vdw_method keyword in the INPUT file:

• (Default) none: no VdW correction
• d2: DFT-D2 method
• d3_0: DFT-D3(0) method
• d3_bj: DFT-D3(BJ) method

Furthermore, ABACUS also provides a list of keywords to control relevant parmeters used in calculating the VdW cor-
rection, such as the scale factor (s6) term. Recommended values of such parameters can be found on the webpage. The
default values of the parameters in ABACUS are set to be the recommended values for PBE.
Examples of VdW-corrected DFT calculations are provided in this directory. There are two input files, where INPUT1
shows how to apply D2 correction with user-specified C6 parameter, and INPUT2 shows how to apply D3(BJ) correction
with default VdW parameters.
To run any of the two cases, users may enter the directory, copy the corresponding input file to INPUT, and run ABACUS.

6.6. SCF in Complex Environments 31

http://dx.doi.org/10.1103/PhysRevB.89.245406
https://abacus.deepmodeling.com/en/latest/advanced/input_files/input-main.html#gate-field-compensating-charge
https://github.com/deepmodeling/abacus-develop/tree/develop/examples/compensating_charge/Pt-slab
https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.20495
https://aip.scitation.org/doi/10.1063/1.3382344
https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.21759
https://www.chemie.uni-bonn.de/pctc/mulliken-center/software/dft-d3
https://www.chemie.uni-bonn.de/pctc/mulliken-center/software/dft-d3
https://github.com/deepmodeling/abacus-develop/tree/develop/examples/vdw/si2

ABACUS

6.7 Spin-polarization and SOC

6.7.1 Non-spin-polarized Calculations

Setting of “nspin 1” in INPUT file means calculation with non-polarized spin. In this case, electrons with spin up and
spin down have same occupations at every energy states, weights of bands per k point would be double.

6.7.2 Collinear Spin Polarized Calculations

Setting of “nspin 2” in INPUT file means calculation with polarized spin along z-axis. In this case, electrons with spin
up and spin down will be calculated respectively, number of k points would be doubled. Potential of electron and charge
density will separate to spin-up case and spin-down case.
Magnetic moment Settings in STRU files are not ignored until “nspin 2” is set in INPUT file
When “nspin 2” is set, the screen output file will contain magnetic moment information. e.g.

ITER TMAG AMAG ETOT(eV) EDIFF(eV) DRHO TIME(s)
GE1 4.16e+00 4.36e+00 -6.440173e+03 0.000000e+00 6.516e-02 1.973e+01

where “TMAG” refers to total magnetization and “AMAG” refers to average magnetization. For more detailed orbital
magnetic moment information, please use Mulliken charge analysis.

Constraint DFT for collinear spin polarized calculations

For some special need, there are two method to constrain electronic spin.
1. “ocp” and “ocp_set” If “ocp=1” and “ocp_set” is set in INPUT file, the occupations of states would be fixed by

“ocp_set”, this method is often used for excited states calculation. Be careful that: when “nspin=1”, spin-up and
spin-down electrons will both be set, and when “nspin=2”, you should set spin-up and spin-down respectively.

2. “nupdown” If “nupdown” is set to non-zero, number of spin-up and spin-down electrons will be fixed, and Fermi
energy level will split to E_Fermi_up and E_Fermi_down. By the way, total magnetization will also be fixed, and
will be the value of “nupdown”.

3. DeltaSpin The DeltaSpin function as proposed by Zefeng Cai and Ben Xu, et al. arXiv:2208.04551v6 has been
implemented in ABACUS in the LCAO basis for the nspin 2 case. In order to use this function, the following
parameters are needed to be set in the input file, for example:

#deltaspin
sc_mag_switch 1
decay_grad_switch 0
sc_thr 1e-7
nsc 150
nsc_min 2
sc_file sc.json
alpha_trial 0.01
sccut 3

The explanation of each input paramters has been explained in the Noncollinear Spin Polarized Calculations section.
An example of the sc_file json file is shown below:

6.7. Spin-polarization and SOC 32

https://arxiv.org/abs/2208.04551

ABACUS

[
{

"element": "Fe",
"itype": 0,
"ScDecayGrad": 0.9,
"ScAtomData": [

{
"index": 0,
"lambda": 0.0,
"target_mag": 2.0,
"constrain": 1

},
{

"index": 1,
"lambda": 0,
"target_mag": 2.0,
"constrain": 1

}
]

}
]

Please refer the Noncollinear Spin Polarized Calculations section for the explanation of each input paramters. The differ-
ence is that lambda, target_mag, and constrain are scalars instead of vectors. Simple examples are provided in
the abacus-develop/examples/spin_polarized directory.

6.7.3 Noncollinear Spin Polarized Calculations

The spin non-collinear polarization calculation corresponds to setting “noncolin 1”, in which case the coupling between
spin up and spin down will be taken into account. In this case, nspin is automatically set to 4, which is usually not required
to be specified manually. The weight of each band will not change, but the number of occupied states will be double. If
the nbands parameter is set manually, it is generally set to twice what it would be when nspin<4.
In general, non-collinearmagneticmoment settings are often used in calculations considering SOC effects. When “lspinorb
1” in INPUT file, “nspin” is also automatically set to 4. Note: different settings for “noncolin” and “lspinorb” correspond
to different calculations:

• noncolin=0 lspinorb=0 nspin<4 : Non-collinear magnetic moments and SOC effects are not considered.
• noncolin=0 lspinorb=0 nspin=4 : Actualy same as the above setting, but the calculation will be larger. So the setting
is not recommended.

• noncolin=1 lspinorb=0 : Non-collinear magnetic moments are considered but SOC effects are not considered
• noncolin=0 lspinorb=1 : The SOC effect is considered but the magnetic moment is limited to the Z direction
• noncolin=1 lspinorb=1 : The SOC effect and non-collinear magnetic moment are both calculated.

6.7. Spin-polarization and SOC 33

ABACUS

Constraint Spin functionality for noncollinear spin polarized calculations

The DeltaSpin function as proposed by Zefeng Cai and Ben Xu, et al. arXiv:2208.04551v6 has been implemented
in ABACUS in the LCAO basis. In order to use this function, the following parameters are needed to be set in the input
file, for example:

#deltaspin
sc_mag_switch 1
decay_grad_switch 1
sc_thr 1e-7
nsc 150
nsc_min 2
sc_file sc.json
alpha_trial 0.01
sccut 3

sc_mag_switch is the switch of deltaspin functionality; decay_grad_switch is the switch of decay gradient
method; sc_thr is the threshold of the spin constraint atomic magnetic moment in unit of Bohr Mag (\muB); nsc is
the number of self-consistent iterations; nsc_min is the minimum number of self-consistent iterations; sc_file is the
file name of the spin constraint parameters; alpha_trial is the initial trial step size for lambda in eV/uB^2; sccut
restriction of step size in eV/uB.
An example of the sc_file json file is shown below:

[
{

"element": "Fe",
"itype": 0,
"ScDecayGrad": 0.9,
"ScAtomData": [

{
"index": 0,
"lambda": [0, 0, 0],
"target_mag": [2.0, 0.0, 0.0],
"constrain": [1,1,1]

},
{

"index": 1,
"lambda": [0, 0, 0],
"target_mag_val": 2.0,
"target_mag_angle1": 80.0,
"target_mag_angle2": 0.0,
"constrain": [1,1,1]

}
]

}
]

The sc_file json file is a list of elemental data in total. For each element, the user should specify its name, the itype
parameter should be in accord with STRU file and start from 0. ScDecayGrad is a parameter for each element in unit
of (uB^2/eV), this parameter needs to be determined for different element, for example, 0.9 uB^2/eV is an appropriate
value for BCC-Fe according to Zefeng Cai’s tests. ScAtomData specifies spin constraining parameters for each atom,
the index starts from 0 and corresponds atomic order in the STRU file. lambda is a 3d vector for each atom, and
it is recommended to set to [0.0, 0.0, 0.0] for all atoms. Users have two optional choices to set the target magnetic
moments for each atom, i.e., by a 3d vector or by angles. If the target_mag is set, the target_mag_val and
target_mag_angle1 and target_mag_angle2 will be ignored. The target_mag is a 3d vector in unit of
Bohr Mag (\muB), and the target_mag_val is a scalar value in unit of Bohr Mag (\muB), target_mag_angle1

6.7. Spin-polarization and SOC 34

https://arxiv.org/abs/2208.04551

ABACUS

and target_mag_angle2 are two angles in unit of degree. The constrain is a 3d vector, if the corresponding
element is set to 1, the corresponding component of the magnetic moment will be constrained, otherwise, it will be
free. Note that the initial atomic magnetic moments are still set in the STRU file. Simple examples are provided in
the abacus-develop/examples/noncollinear directory. One should set noncolliear to 1 to run the
DeltaSpin function, lspinorb=1 is not mandatory, but it is recommended to set to 1 to get more accurate results.

6.7.4 For the continuation job

• Continuation job for “nspin 1” need file “SPIN1_CHG.cube” which is generated by setting “out_chg=1” in task
before. By setting “init_chg file” in new job’s INPUT file, charge density will start from file but not atomic.

• Continuation job for “nspin 2” need files “SPIN1_CHG.cube” and “SPIN2_CHG.cube” which are generated by
“out_chg 1” with “nspin 2”, and refer to spin-up and spin-down charge densities respectively. It should be note that
reading “SPIN1_CHG.cube” only for the continuation target magnetic moment job is not supported now.

• Continuation job for “nspin 4” need files “SPIN%s_CHG.cube”, where %s in {1,2,3,4}, which are generated by
“out_chg 1” with any variable setting leading to ‘nspin’=4, and refer to charge densities in Pauli spin matrixes. It
should be note that reading charge density files printing by ‘nspin’=2 case is supported, which means only σtot and
σz are read.

6.8 SOC Effects

6.8.1 SOC

lspinorb is used for control whether or not SOC(spin-orbit coupling) effects should be considered.
Both basis_type=pw and basis_type=lcao support scf and nscf calculation with SOC effects.
Atomic forces and cell stresses can not be calculated with SOC effects yet.

6.8.2 Pseudopotentials and Numerical Atomic Orbitals

For Norm-Conserving pseudopotentials, there are differences between SOC version and non-SOC version.
Please check your pseudopotential files before calculating. In PP_HEADER part, keyword has_so=1 and rela-
tivistic="full" refer to SOC effects have been considered, which would lead to different PP_NONLOCAL and
PP_PSWFC parts. Please be careful that relativistic="full" version can be used for SOC or non-SOC cal-
culation, but relativistic="scalar" version only can be used for non-SOC calculation. When full-relativistic
pseudopotential is used for non-SOC calculation, ABACUS will automatically transform it to scalar-relativistic version.
Numerical atomic orbitals in ABACUS are unrelated with spin, and same orbital file can be used for SOC and non-SOC
calculation.

6.8. SOC Effects 35

ABACUS

6.8.3 Partial-relativistic SOC Effect

Sometimes, for some real materials, both scalar-relativistic and full-relativistic can not describe the exact spin-orbit cou-
pling. Artificial modulation can help for these cases.
soc_lambda, which has value range [0.0, 1.0] , is used for modulate SOC effect. In particular, soc_lambda 0.0
refers to scalar-relativistic case and soc_lambda 1.0 refers to full-relativistic case.

6.8. SOC Effects 36

CHAPTER

SEVEN

BASIS SET AND PSEUDOPOTENTIALS

7.1 Basis Set

ABACUS supports both PW and LCAO basis set, controlled by keyword basis_type in INPUT file.
The default value of basis_type is pw. The size of pw basis set is controlled by imposing an upper bound for the kinetic
energy cutoff of the plane wave.
When choosing lcao basis set, users need to prepare a set of atomic orbitals. Such files may be downloaded from the
official website. For more information, also check the NUMERICAL_ORBITAL section in the specification of the STRU
file.
The sequence of orbitals in lcao basis set is as follows. First, all the orbitals belonging to one particular atom are put
together. These atom orbitals are arranged as the atom order specified in the STRU file. Then, the orbitals of each atom
are arranged according to the orbital files. If the orbital file says that the number of s2/7p2/7d…orbitals is ns2/7np2/7nd…then
the orbitals are aligned as first ns s orbitals, then np p orbitals, and then nd d orbitals…Last, the angular part of each
orbital is real spherical harmonic function. They are aligned as Y00, Y10, Y11, Y1-1, Y20, Y21, Y2-1, Y22, Y2-2,
which is s,pz ,px,py ,dz2 ,dxz ,dyz ,dx2−y2 ,dxy . The corresponding formula can be seen in Table of spherical harmonics -
Wikipedia. Note that these formula lack of the Condon–Shortley phase (−1)m, which is presented in the lcao orbitals
of ABACUS.

7.2 Generating atomic orbital bases

Users may also choose to generate their own atomic obitals. In ABACUS, the atomic orbital bases are generated using a
scheme developed in the paper. A detailed description of the procedure for generating orbitals will be provided later.

7.3 BSSE Correction

For treating BSSE(Basis Set Superposition Error), we allow for the inclusion of “empty” or “ghost” atoms in the calcu-
lation. Namely, when expanding the Hamiltonian, basis sets on the atoms are used, while the ionic potentials on those
atoms are not included when constructing the Hamiltonian.
An empty atom is defined in the STRU file when an element name contains the “empty” suffix, such as “H_empty”,
“O_empty” and so on. Here we provide an example of calculating the molecular formation energy of H2O with BSSE
correction.
In the example, we provide four STRU files:

• STRU_0 : used along with ntype = 2;normal calculation of water molecule (E(H2O))
obtained total energy of -466.4838149140513 eV

37

http://abacus.ustc.edu.cn/pseudo/list.htm
https://en.wikipedia.org/wiki/Table_of_spherical_harmonics#Real_spherical_harmonics
https://en.wikipedia.org/wiki/Table_of_spherical_harmonics#Real_spherical_harmonics
https://iopscience.iop.org/article/10.1088/0953-8984/22/44/445501
https://github.com/deepmodeling/abacus-develop/tree/develop/examples/bsse/water

ABACUS

• STRU_1 : used along with ntype = 2;calculation of single O atom (EO)
obtained total energy of -427.9084406198214 eV

• STRU_2 : used along with ntype = 3;calculation of 1st H atom (EH1)
obtained total energy of -12.59853381731160 eV

• STRU_3 : used along with ntype = 3;calculation of 2nd H atom (EH2)
obtained total energy of -12.59853378720844 eV
Note : Remember to adjust the parameter ntype in INPUT file

Thus, the formation energy is given by:

∆E(H2O) = E(H2O)− E(O)− E(H1)− E(H2) ≈ −13.38eV

7.4 Pseudopotentials

In ABACUS, we support norm-conserving and ultrasoft pseudopotentials. For norm-conserving pseudopotentials, we
support four different formats of the pseudopotential files: UPF, UPF2, VWR, and BLPS. For ultrasoft pseudopotentials,
currently we support only one format of the pseudopotential files: UPF2.
For more information, check the ATOMIC_SPECIES section in the specification of the STRU file.
Here we list some common sources of the pseudopotential files:

1. Quantum ESPRESSO.
2. SG15-ONCV.
3. DOJO.
4. BLPS.

7.4. Pseudopotentials 38

http://www.quantum-espresso.org/pseudopotentials/
http://quantum-simulation.org/potentials/sg15_oncv/upf/
http://www.pseudo-dojo.org/
https://github.com/PrincetonUniversity/BLPSLibrary

CHAPTER

EIGHT

GEOMETRY OPTIMIZATION

By setting calculation to be relax or cell-relax, ABACUS supports structural relaxation and variable-cell
relaxation.
Current implementation of variable-cell relaxation in ABACUS now follows a nested procedure: fixed cell structural
relaxation will be performed, followed by an update of the cell parameters, and the process is repeated until convergence
is achieved.
An example of the variable cell relaxation can be found in our repository, which is provided with the reference output file
log.ref. Note that in log.ref, each ionic step is labelled in the following manner:

RELAX CELL : 3
RELAX IONS : 1 (in total: 15)

indicating that this is the first ionic step of the 3rd cell configuration, and it is the 15-th ionic step in total.

8.1 Optimization Algorithms

In the nested procedure mentioned above, we used CG method to perform cell relaxation, while offering four different
algorithms for doing fixed-cell structural relaxation: BFGS, SD(steepest descent), CG(conjugate gradient), as well as a
mixed CG-BFGS method. The optimziation algorithm can be selected using keyword relax_method. We also provide a
list of keywords for controlling the relaxation process.

8.1.1 BFGS method

The BFGS method is a quasi-Newton method for solving nonlinear optimization problem. It belongs to the class of quasi-
Newton method where the Hessian matrix is approximated during the optimization process. If the initial point is not far
from the extrema, BFGS tends to work better than gradient-based methods.
In ABACUS, we implemented the BFGS method for doing fixed-cell structural relaxation.

39

https://github.com/deepmodeling/abacus-develop/tree/develop/examples/relax/pw_al
https://en.wikipedia.org/wiki/Broyden%E2%80%93Fletcher%E2%80%93Goldfarb%E2%80%93Shanno_algorithm

ABACUS

8.1.2 SD method

The SD (steepest descent) method is one of the simplest first-order optimization methods, where in each step the motion
is along the direction of the gradient, where the function descents the fastest.
In practice, SD method may take many iterations to converge, and is generally not used.

8.1.3 CG method

The CG (conjugate gradient) method is one of the most widely used methods for solving optimization problems.
In ABACUS, we implemented the CG method for doing fixed-cell structural relaxation as well as the optimization of cell
parameters.

8.2 Constrained Optimization

Apart from conventional optimization where all degrees of freedom are allowed to move, we also offer the option of doing
constrained optimization in ABACUS.

8.2.1 Fixing Atomic Positions

Usersmay note that in the above-mentioned example, the atomic positions in STRUfile are given along with three integers:

Al
0.0
4
0.00 0.00 0.00 1 1 1
0.53 0.50 0.00 1 1 1
0.50 0.00 0.52 1 1 1
0.00 0.50 0.50 1 1 1

For relaxation calculations, the three integers denote whether the corresponding degree of freedom is allowed to move.
For example, if we replace the STRU file by:

Al
0.0
4
0.00 0.00 0.00 1 1 0
0.53 0.50 0.00 1 1 1
0.50 0.00 0.52 1 1 1
0.00 0.50 0.50 1 1 1

then the first Al atom will not be allowed to move in z direction.
Fixing atomic position is sometimes helpful during relaxation of isolated molecule/cluster, to prevent the system from
drifting in space.

8.2. Constrained Optimization 40

https://en.wikipedia.org/wiki/Gradient_descent
https://en.wikipedia.org/wiki/Conjugate_gradient_method

ABACUS

8.2.2 Fixing Cell Parameters

Sometimes we want to do variable-cell relaxation with some of the cell degrees of freedom fixed. This is achieved by
keywords such as fixed_axes, fixed_ibrav and fixed_atoms. Specifically, if users are familiar with the ISIF option from
VASP, then we offer the following correspondence:

• ISIF = 0 : calculation = “relax”
• ISIF = 1, 2 : calculation = “relax”, cal_stress = 1
• ISIF = 3 : calculation = “cell-relax”
• ISIF = 4 : calculation = “cell-relax”, fixed_axes = “volume”
• ISIF = 5 : calculation = “cell-relax”, fixed_axes = “volume”, fixed_atoms = True
• ISIF = 6 : calculation = “cell-relax”, fixed_atoms = True
• ISIF = 7 : calculation = “cell-realx”, fixed_axes = “shape”, fixed_atoms = True

8.2. Constrained Optimization 41

CHAPTER

NINE

MOLECULAR DYNAMICS

Molecular dynamics (MD) is a computer simulationmethod for analyzing the physical movements of atoms andmolecules.
The atoms and molecules are allowed to interact for a fixed period of time, giving a view of the dynamic “evolution” of
the system. In the most common version, the trajectories of atoms and molecules are determined by numerically solving
Newton’s equations of motion for a system of interacting particles, where forces between the particles and their potential
energies are calculated using first-principles calculations (first-principles molecular dynamics, FPMD), or interatomic
potentials and molecular mechanics force fields (classical molecular dynamics, CMD).
By setting calculation to be md, ABACUS currently provides several different MD evolution methods, which is specified
by keyword md_type in the INPUT file:

• fire: a MD-based relaxation algorithm, see details here
• nve: NVE ensemble with velocity Verlet algorithm
• nvt: NVT ensemble
• npt: Nose-Hoover style NPT ensemble
• langevin: NVT ensemble with Langevin thermostat
• msst: MSST method

When md_type is set to nvt, md_thermostat is used to specify the temperature control method used in NVT ensemble.
• nhc: Nose-Hoover chain
• anderson: Anderson thermostat
• berendsen: Berendsen thermostat
• rescaling: velocity Rescaling method 1
• rescale_v: velocity Rescaling method 2

When md_type is set to npt, md_pmode is used to specify the cell fluctuation mode in NPT ensemble based on the Nose-
Hoover style non-Hamiltonian equations of motion.

• iso: isotropic cell fluctuations
• aniso: anisotropic cell fluctuations
• tri: non-orthogonal (triclinic) simulation box

Furthermore, ABACUS also provides a list of keywords to control relevant parmeters used in MD simulations.
The MD output information will be written into the file MD_dump2/7 in which the atomic forces, atomic velocities, and
lattice virial are controlled by keyword dump_force, dump_vel, and dump_virial, respectively.
Examples ofMD simulations are also provided. There are eight INPUT files corresponding to eight differentMD evolution
methods in the directory. For examlpe, INPUT_0 shows how to employ the NVE simulation.

42

ABACUS

To run any of the fix cases, users may enter the directory, copy the corresponding input file to INPUT, and run ABACUS.

9.1 FIRE

FIRE (fast inertial relaxation engine) is a MD-based minimization algorithm. It is based on conventional molecular
dynamics with additional velocity modifications and adaptive time steps. The MD trajectory will descend to an energy-
minimum.

9.2 NVE

NVE ensemble (i. e. microcanonical ensemble) is a statistical ensemble that represents the possible states of a mechanical
system whose total energy is exactly specified. The system is assumed to be isolated in the sense that it cannot exchange
energy or particles with its environment, so that the energy of the system does not change with time.
The primarymacroscopic variables of themicrocanonical ensemble are the total number of particles in the system (symbol:
N), the system’s volume (symbol: V), as well as the total energy in the system (symbol: E). Each of these is assumed to
be constant in the ensemble.
Currently NVE ensemble in ABACUS is implemented based on the velocity verlet algorithm.

9.3 Nose Hoover Chain

NVT ensemble (i. e. canonical ensemble) is the statistical ensemble that represents the possible states of a mechanical
system in thermal equilibrium with a heat bath at a fixed temperature. The system can exchange energy with the heat
bath, so that the states of the system will differ in total energy.
The principal thermodynamic variable of the canonical ensemble, determining the probability distribution of states, is
the absolute temperature (symbol: T). The ensemble typically also depends on mechanical variables such as the number
of particles in the system (symbol: N) and the system’s volume (symbol: V), each of which influence the nature of the
system’s internal states. An ensemble with these three parameters is sometimes called the NVT ensemble.
The isothermal–isobaric ensemble (constant temperature and constant pressure ensemble), also called NPT ensemble, is
a statistical mechanical ensemble that maintains the number of particles N, constant temperature T, and constant pressure
P. This ensemble plays an important role in chemistry as chemical reactions are usually carried out under constant pressure
condition. The NPT ensemble is also useful for measuring the equation of state of model systems whose virial expansion
for pressure cannot be evaluated, or systems near first-order phase transitions.
ABACUS perform time integration on Nose-Hoover style non-Hamiltonian equations of motion which are designed to
generate positions and velocities sampled from NVT and NPT ensemble.

9.4 Langevin

Langevin thermostat can be used for molecular dynamics equations by assuming that the atoms being simulated are
embedded in a sea of much smaller fictional particles. In many instances of solute-solvent systems, the behavior of the
solute is desired, and the behavior of the solvent is non-interesting(e.g. proteins, DNA, nanoparticles in solution). In these
cases, the solvent influences the dynamics of the solute(typically nanoparticles) via random collisions, and by imposing a
frictional drag force on the motion of the nanoparticle in the solvent. The damping factor and the random force combine
to give the correct NVT ensemble.

9.1. FIRE 43

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.97.170201
https://aip.scitation.org/doi/abs/10.1063/1.442716
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.31.1695
https://en.wikipedia.org/wiki/Langevin_dynamics

ABACUS

9.5 Anderson

Anderson thermostat couples the system to a heat bath that imposes the desired temperature to simulate the NVT en-
semble. The coupling to a heat bath is represented by stochastic collision that act occasionally on randomly selected
particles.

9.6 Berendsen

Reset the temperature of a group of atoms by using a Berendsen thermostat, which rescales their velocities every timestep.
In this scheme, the system is weakly coupled to a heat bath with some temperature. Though the thermostat does not gen-
erate a correct canonical ensemble (especially for small systems), for large systems on the order of hundreds or thousands
of atoms/molecules, the approximation yields roughly correct results for most calculated properties.

9.7 Rescaling

Reset the temperature of a group of atoms by explicitly rescaling their velocities. Velocities are rescaled if the current
and target temperature differ more than md_tolerance (Kelvin).

9.8 Rescale_v

Reset the temperature of a group of atoms by explicitly rescaling their velocities. Every md_nraise steps the current
temperature is rescaled to target temperature.

9.9 MSST

ABACUS performs theMulti-Scale Shock Technique (MSST) integration to update positions and velocities each timestep
to mimic a compressive shock wave passing over the system. The MSST varies the cell volume and temperature in such a
way as to restrain the system to the shock Hugoniot and the Rayleigh line. These restraints correspond to the macroscopic
conservation laws dictated by a shock front.

9.10 DPMD

Compiling ABACUS with DeePMD-kit, MD calculations based on machine learning DP model is enabled.
To employ DPMD calculations, esolver_type should be set to dp. And the filename of DP model is specified by keyword
pot_file.
First, we can find whether contains keyword type_map in the DP model through the shell command:

strings Al-SCAN.pb | grep type_map

{"model": {"type_map": ["Al"], "descriptor": {"type": "se_e2_a", "sel": [150], "rcut_
↪→smth": 0.5, "rcut": 6.0, "neuron": [25, 50, 100], "resnet_dt": false, "axis_neuron
↪→": 16, "seed": 1, "activation_function": "tanh", "type_one_side": false, "precision
↪→": "default", "trainable": true, "exclude_types": [], "set_davg_zero": false},

(continues on next page)

9.5. Anderson 44

https://aip.scitation.org/doi/abs/10.1063/1.439486
https://aip.scitation.org/doi/10.1063/1.448118
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.90.235503
https://github.com/deepmodeling/deepmd-kit

ABACUS

(continued from previous page)
↪→"fitting_net": {"neuron": [240, 240, 240], "resnet_dt": true, "seed": 1, "type":
↪→"ener", "numb_fparam": 0, "numb_aparam": 0, "activation_function": "tanh",
↪→"precision": "default", "trainable": true, "rcond": 0.001, "atom_ener": []}, "data_
↪→stat_nbatch": 10, "data_stat_protect": 0.01}, "learning_rate": {"type": "exp",
↪→"decay_steps": 5000, "start_lr": 0.001, "stop_lr": 3.51e-08, "scale_by_worker":
↪→"linear"}, "loss": {"type": "ener", "start_pref_e": 0.02, "limit_pref_e": 1, "start_
↪→pref_f": 1000, "limit_pref_f": 1, "start_pref_v": 0, "limit_pref_v": 0, "start_pref_
↪→ae": 0.0, "limit_pref_ae": 0.0, "start_pref_pf": 0.0, "limit_pref_pf": 0.0, "enable_
↪→atom_ener_coeff": false}, "training": {"training_data": {"systems": ["../deepmd_
↪→data/"], "batch_size": "auto", "set_prefix": "set", "auto_prob": "prob_sys_size",
↪→"sys_probs": null}, "validation_data": {"systems": ["../deepmd_validation"], "batch_
↪→size": 1, "numb_btch": 3, "set_prefix": "set", "auto_prob": "prob_sys_size", "sys_
↪→probs": null}, "numb_steps": 1000000, "seed": 10, "disp_file": "lcurve.out", "disp_
↪→freq": 100, "save_freq": 1000, "save_ckpt": "model.ckpt", "disp_training": true,
↪→"time_training": true, "profiling": false, "profiling_file": "timeline.json",
↪→"enable_profiler": false, "tensorboard": false, "tensorboard_log_dir": "log",
↪→"tensorboard_freq": 1}}

If the keyword type_map is found, ABACUS will match the atom types between STRU and DP model.
Otherwise, all atom types must be specified in the STRU in the order consistent with that of the DP model, even if the
number of atoms is zero!
For example, there is a Al-Cu-Mg ternary-alloy DP model, but the simulated cell is a Al-Cu binary alloy. Then the STRU
should be written as follows:

ATOMIC_SPECIES
Al 26.982
Cu 63.546
Mg 24.305

LATTICE_CONSTANT
1.889727000000

LATTICE_VECTORS
4.0 0.0 0.0
0.0 4.0 0.0
0.0 0.0 4.0

ATOMIC_POSITIONS
Cartesian

Al
0
2
0.0 0.0 0.0
0.5 0.5 0.0

Cu
0
2
0.5 0.0 0.5
0.0 0.5 0.5

Mg
0
0

9.10. DPMD 45

CHAPTER

TEN

ACCELERATE PERFORMANCE

This section describes various methods for improving ABACUS performance for different classes of problems running
on different kinds of devices.
Accelerated versions of CUDA GPU implementations have been added to ABACUS, which will typically run faster than
the standard non-accelerated versions. This requires appropriate hardware to be present on your system, e.g. NVIDIA
GPUs.

10.1 CUDA GPU Implementations

In ABACUS, we provide the option to use the GPU devices to accelerate the performance. And it has the following
general features:

• Full gpu implementations: During the SCF progress, Psi, Hamilt, Hsolver, DiagCG, and DiagoDavid
classes are stored or calculated by the GPU devices.

• Electronic state data: (e.g. electronic density) are moved from the GPU to the CPU(s) every scf step.
• Acclerated by the NVIDIA libraries: cuBLAS for common linear algebra calculations, cuSolver for eigen
values/vectors, and cuFFT for the conversions between the real and recip spaces.

• Multi GPU supprted: Using multiple MPI tasks will often give the best performance. Note each MPI task will
be bind to a GPU device with automatically computing load balancing.

• Parallel strategy: K point parallel.

10.1.1 Required hardware/software

To compile and use ABACUS in CUDAmode, you currently need to have an NVIDIAGPU and install the corresponding
NVIDIA CUDA toolkit software on your system (this is only tested on Linux and unsupported on Windows):

• Check if you have an NVIDIA GPU: cat /proc/driver/nvidia/gpus/*/information
• Go to https://developer.nvidia.com/cuda-downloads
• Install a driver and toolkit appropriate for your system (SDK is not necessary)

46

https://developer.nvidia.com/cuda-downloads

ABACUS

10.1.2 Building ABACUS with the GPU support:

Check the Advanced Installation Options for the installation of CUDA version support.

10.1.3 Run with the GPU support by editing the INPUT script:

In INPUT file we need to set the value keyword device to be gpu.

10.1.4 Examples

We provides examples of gpu calculations.

10.1.5 Known limitations

• CG, BPCG andDavidsonmethods are supported, so the input keyword ks_solver can take the values cg, bpcg
or dav,

• Only PW basis is supported, so the input keyword basis_type can only take the value pw,
• Only k point parallelization is supported, so the input keyword kpar will be set to match the number of MPI tasks
automatically.

• By default, CUDA architectures 60, 70, 75, 80, 86, and 89 are compiled (if supported). It can be overriden using
the CMake variable CMAKE_CUDA_ARCHITECTURES or the environmental variable CUDAARCHS.

10.1.6 FAQ

Q: Does the GPU implementations support atomic orbital basis sets?
A: Currently no.

10.1. CUDA GPU Implementations 47

https://abacus-rtd.readthedocs.io/en/latest/advanced/install.html#build-with-cuda-support
https://github.com/deepmodeling/abacus-develop/tree/develop/examples/gpu
https://cmake.org/cmake/help/latest/variable/CMAKE_CUDA_ARCHITECTURES.html
https://cmake.org/cmake/help/latest/envvar/CUDAARCHS.html

CHAPTER

ELEVEN

ELECTRONIC PROPERTIES AND OUTPUTS

11.1 Extracting Band Structure

ABACUS can calculate the energy band structure, and the examples can be found in examples/band. Similar to the DOS
case, we first, do a ground-state energy calculation with one additional keyword “out_chg” in the INPUT file:

out_chg 1

This will produce the converged charge density, which is contained in the file SPIN1_CHG.cube. Then, use the same
STRU file, pseudopotential file and atomic orbital file (and the local density matrix file onsite.dm if DFT+U is used) to do
a non-self-consistent calculation. In this example, the potential is constructed from the ground-state charge density from
the proceeding calculation. Now the INPUT file is like:

INPUT_PARAMETERS
#Parameters (General)
ntype 1
nbands 8
calculation nscf
basis_type lcao
read_file_dir ./

#Parameters (Accuracy)
ecutwfc 60
scf_nmax 50
scf_thr 1.0e-9
pw_diag_thr 1.0e-7

#Parameters (File)
init_chg file
out_band 1
out_proj_band 1

#Parameters (Smearing)
smearing_method gaussian
smearing_sigma 0.02

Here the the relevant k-point file KPT looks like,

K_POINTS # keyword for start
6 # number of high symmetry lines
Line # line-mode
0.5 0.0 0.5 20 # X
0.0 0.0 0.0 20 # G

(continues on next page)

48

https://github.com/deepmodeling/abacus-develop/tree/develop/examples/band
https://abacus-rtd.readthedocs.io/en/latest/advanced/elec_properties/dos.html
https://abacus-rtd.readthedocs.io/en/latest/advanced/elec_properties/dos.html
https://abacus-rtd.readthedocs.io/en/latest/advanced/input_files/input-main.html#out-chg
http://onsite.dm

ABACUS

(continued from previous page)
0.5 0.5 0.5 20 # L
0.5 0.25 0.75 20 # W
0.375 0.375 0.75 20 # K
0.0 0.0 0.0 1 # G

This means we are using:
• 6 number of k points, here means 6 k points: (0.5, 0.0, 0.5) (0.0, 0.0, 0.0) (0.5, 0.5, 0.5) (0.5, 0.25, 0.75) (0.375,
0.375, 0.75) (0.0, 0.0, 0.0)

• 20/1 number of k points along the segment line, which is constructed by two adjacent k points.
Run the program, and you will see a file named BANDS_1.dat in the output directory. Plot it to get energy band structure.
If “out_proj_band” set 1, it will also produce the projected band structure in a file called PBAND_1 in xml format.
The PBAND_1 file starts with number of atomic orbitals in the system, the text contents of element <band struc-
ture> is the same as data in the BANDS_1.dat file, such as:

<pband>
<nspin>1</nspin>
<norbitals>153</norbitals>
<band_structure nkpoints="96" nbands="50" units="eV">
...

The rest of the files arranged in sections, each section with a header such as below:

<orbital
index=" 1"
atom_index=" 1"
species="Si"
l=" 0"
m=" 0"
z=" 1"

>
<data>
...
</data>

The shape of text contents of element <data> is (Number of k-points, Number of bands)

11.2 Calculating DOS and PDOS

11.2.1 DOS

ABACUS can calculate the density of states (DOS) of the system, and the examples can be found in examples/dos. We
first, do a ground-state energy calculation with one additional keyword “out_chg” in the INPUT file:

out_chg 1

this will produce the converged charge density, which is contained in the file SPIN1_CHG.cube. Then, use the same
STRU file, pseudopotential file and atomic orbital file (and the local density matrix file onsite.dm if DFT+U is used) to do
a non-self-consistent calculation. In this example, the potential is constructed from the ground-state charge density from
the proceeding calculation. Now the INPUT file is like:

11.2. Calculating DOS and PDOS 49

https://github.com/deepmodeling/abacus-develop/tree/develop/examples/dos
https://abacus-rtd.readthedocs.io/en/latest/advanced/input_files/input-main.html#out-chg
http://onsite.dm

ABACUS

INPUT_PARAMETERS
#Parameters (General)
suffix Si2_diamond
ntype 1
nbands 8
calculation nscf
basis_type lcao
read_file_dir ./

#Parameters (Accuracy)
ecutwfc 60
symmetry 1
scf_nmax 50
scf_thr 1.0e-9
pw_diag_thr 1.0e-7

#Parameters (File)
init_chg file
out_dos 1
dos_sigma 0.07

Some parameters in the INPUT file are explained:
• calculation
choose which kind of calculation: scf calculation, nscf calculation, structure relaxation or Molecular Dynamics.
Now we need to do one step of nscf calculation. Attention: This is a main variable of ABACUS, and for its more
information please see the here.

• pw_diag_thr
threshold for the CG method which diagonalizes the Hamiltonian to get eigenvalues and eigen wave functions. If
one wants to do nscf calculation, pw_diag_thr needs to be changed to a smaller account, typically smaller than
1.0e-3. Note that this parameter only apply to plane-wave calculations that employ the CG or Davidson method to
diagonalize the Hamiltonian. For its more information please see the here.
For LCAO calculations, this parameter will be neglected !

• init_chg
the type of starting density. When doing scf calculation, this variable can be set ”atomic”. When doing nscf
calculation, the charge density already exists(eg. in SPIN1_CHG.cube), and the variable should be set as ”file”. It
means the density will be read from the existing file SPIN1_CHG.cube. For its more information please see the
here.

• out_dos
output density of state(DOS). The unit of DOS is (number of states)/(eV * unitcell). For its
more information please see the here.

• dos_sigma
the gaussian smearing parameter(DOS), in unit of eV. For its more information please see the here.

• read_file_dir
the location of electron density file. For its more information please see the here.

To have an accurate DOS, one needs to have a denser k-point mesh. For example, the KPT file can be set as:

11.2. Calculating DOS and PDOS 50

https://abacus-rtd--1282.org.readthedocs.build/en/1282/advanced/input_files/input-main.html#calculation
https://abacus-rtd--1282.org.readthedocs.build/en/1282/advanced/input_files/input-main.html#pw_diag_thr
https://abacus-rtd--1282.org.readthedocs.build/en/1282/advanced/input_files/input-main.html#init_chg
https://abacus-rtd--1282.org.readthedocs.build/en/1282/advanced/input_files/input-main.html#out_dos
https://abacus-rtd--1282.org.readthedocs.build/en/1282/advanced/input_files/input-main.html#dos_sigma
https://abacus-rtd--1282.org.readthedocs.build/en/1282/advanced/input_files/input-main.html#read_file_dir

ABACUS

K_POINTS
0
Gamma
8 8 8 0 0 0

Run the program, and you will see a file named DOS1_smearing.dat in the output directory. The first two columns in
the file are the energy and DOS, respectively, and the third column is the sum of DOS. Plot file DOS1_smearing.dat with
graphing software, and you’ll get the DOS.

-5.49311 0.0518133 0.0518133
-5.48311 0.0641955 0.116009
-5.47311 0.0779299 0.193939
-5.46311 0.0926918 0.28663
-5.45311 0.108023 0.394653
-5.44311 0.123346 0.517999
...

11.2.2 PDOS

Along with the DOS1_smearing.dat file, we also produce the projected density of states (PDOS) in a file called PDOS.
The PDOS file starts with number of atomic orbitals in the system, then a list of energy values, such as:

<pdos>
<nspin>1</nspin>
<norbitals>26</norbitals>
<energy_values units="eV">

-5.50311
-5.49311
-5.48311
-5.47311

...

The rest of the fileis arranged in sections, each section with a header such as below:

<orbital
index=" 1"
atom_index=" 1"
species="Si"
l=" 0"
m=" 0"
z=" 1"

>
<data>
...
</data>

which tells the atom and symmetry of the current atomic orbital, and followed by the PDOS values. The values can thus
be plotted against the energies. The unit of PDOS is also (number of states)/(eV * unitcell).

11.2. Calculating DOS and PDOS 51

ABACUS

11.3 Mulliken Charge Analysis

From version 2.1.0, ABACUS has the function of Mulliken population analysis. The example can be found in exam-
ples/mulliken.
To use this function, set out_mul to 1 in the INPUT file. After calculation, there will be an output file named mulliken.
txt in the output directory. In MD calculations, the output interval is controlled by the keyword out_interval. In the file,
there are contents like (nspin 1):

STEP: 0
CALCULATE THE MULLIkEN ANALYSIS FOR EACH ATOM
Total charge of spin 1: 8
Total charge: 8

Decomposed Mulliken populations
0 Zeta of Si Spin 1
s 0 1.2553358

sum over m 1.2553358
s 1 -0.030782972

sum over m -0.030782972
sum over m+zeta 1.2245529

pz 0 0.85945806
px 0 0.85945806
py 0 0.85945806

sum over m 2.5783742
pz 1 0.0065801228
px 1 0.0065801228
py 1 0.0065801228

sum over m 0.019740368
sum over m+zeta 2.5981145

dz^2 0 0.0189287
dxz 0 0.046491729
dyz 0 0.046491729
dx^2-y^2 0 0.0189287
dxy 0 0.046491729

sum over m 0.17733259
sum over m+zeta 0.17733259

Total Charge on atom: Si 4
...

The file gives Mulliken charge in turn according to the order of atoms in the system. For example, the following block is
for the first atom in system (nspin 2),

0 Zeta of Si Spin 1 Spin 2 Sum ␣
↪→ Diff
...
Total Charge on atom: Si 4
Total Magnetism on atom: Si -1.2739809e-14

And the next block is for the second atom in system, and so on.

1 Zeta of Si Spin 1 Spin 2 Sum ␣
↪→ Diff
...

For each atom, the file gives detailed Mulliken population analysis at different levels,
• magnetic quantum number level: such as lines beigin with ‘s,px,py,pz,…’
• azimuthal quantum number level: such as lines begin with ‘sum over m’.

11.3. Mulliken Charge Analysis 52

https://github.com/deepmodeling/abacus-develop/tree/develop/examples/mulliken
https://github.com/deepmodeling/abacus-develop/tree/develop/examples/mulliken

ABACUS

• principal quantum number level: such as lines begin with ‘sum over m+zeta’. Here ‘zeta’ equals ‘zeta’ in the file,
which means how many radial atomic orbitals there are for a given orbital angular momentum.

• atomic level: such as lines begin with ‘Total Charge on atom’.
More orbital information can be found in ‘Orbital’ file output with ‘mulliken.txt’ when out_mul 1

11.4 Extracting Electrostatic Potential

From version 2.1.0, ABACUS has the function of outputing electrostatic potential, which consists of Hartree potential
and the local pseudopotential. To use this function, set ‘out_pot’ to ‘2’ in the INPUT file. Here is an example for the
Si-111 surface, and the INPUT file is:

INPUT_PARAMETERS
#Parameters (1.General)
calculation scf
ntype 1
nbands 100
gamma_only 0

#Parameters (2.Iteration)
ecutwfc 50
scf_thr 1e-8
scf_nmax 200

#Parameters (3.Basis)
basis_type lcao
ks_solver genelpa

#Parameters (4.Smearing)
smearing_method gaussian
smearing_sigma 0.01

#Parameters (5.Mixing)
mixing_type broyden
mixing_beta 0.4
out_pot 2

The STRU file is:

ATOMIC_SPECIES
Si 1.000 Si_ONCV_PBE-1.0.upf

NUMERICAL_ORBITAL
Si_gga_8au_60Ry_2s2p1d.orb

LATTICE_CONSTANT
1.8897162

LATTICE_VECTORS
7.6800298691 0.0000000000 0.0000000000
-3.8400149345 6.6511009684 0.0000000000
0.0000000000 0.0000000000 65.6767997742

ATOMIC_POSITIONS
Cartesian

(continues on next page)

11.4. Extracting Electrostatic Potential 53

https://abacus-rtd.readthedocs.io/en/latest/advanced/input_files/input-main.html#out-pot
https://github.com/deepmodeling/abacus-develop/tree/develop/examples/electrostatic_potential/lcao_Si

ABACUS

(continued from previous page)
Si
0.0
40
3.840018749 2.217031479 2.351520061 0 0 0
3.840014935 0.000000000 3.135360003 0 0 0
3.840018749 2.217031479 5.486879826 0 0 0
3.840014935 0.000000000 6.270720005 0 0 0
3.840018749 2.217031479 8.622240067 0 0 0
3.840014935 0.000000000 9.406080246 0 0 0
3.840018749 2.217031479 11.757599831 0 0 0
3.840014935 0.000000000 12.541440010 0 0 0
3.840018749 2.217031479 14.892959595 0 0 0
3.840014935 0.000000000 0.000000000 0 0 0
1.920011044 5.542582035 2.351520061 0 0 0
1.920007467 3.325550556 3.135360003 0 0 0
1.920011044 5.542582035 5.486879826 0 0 0
1.920007467 3.325550556 6.270720005 0 0 0
1.920011044 5.542582035 8.622240067 0 0 0
1.920007467 3.325550556 9.406080246 0 0 0
1.920011044 5.542582035 11.757599831 0 0 0
1.920007467 3.325550556 12.541440010 0 0 0
1.920011044 5.542582035 14.892959595 0 0 0
1.920007467 3.325550556 0.000000000 0 0 0
0.000003815 2.217031479 2.351520061 0 0 0
0.000000000 0.000000000 3.135360003 0 0 0
0.000003815 2.217031479 5.486879826 0 0 0
0.000000000 0.000000000 6.270720005 0 0 0
0.000003815 2.217031479 8.622240067 0 0 0
0.000000000 0.000000000 9.406080246 0 0 0
0.000003815 2.217031479 11.757599831 0 0 0
0.000000000 0.000000000 12.541440010 0 0 0
0.000003815 2.217031479 14.892959595 0 0 0
0.000000000 0.000000000 0.000000000 0 0 0
-1.920003772 5.542582035 2.351520061 0 0 0
-1.920007467 3.325550556 3.135360003 0 0 0
-1.920003772 5.542582035 5.486879826 0 0 0
-1.920007467 3.325550556 6.270720005 0 0 0
-1.920003772 5.542582035 8.622240067 0 0 0
-1.920007467 3.325550556 9.406080246 0 0 0
-1.920003772 5.542582035 11.757599831 0 0 0
-1.920007467 3.325550556 12.541440010 0 0 0
-1.920003772 5.542582035 14.892959595 0 0 0
-1.920007467 3.325550556 0.000000000 0 0 0

the KPT file is:

K_POINTS
0
Gamma
4 4 2 0 0 0

Run the program, and you will see the following two files in the output directory,
• ElecStaticPot.cube: contains electrostatic potential (unit: Rydberg) in realspace. This file can be visually viewed
by the software of VESTA.

11.4. Extracting Electrostatic Potential 54

ABACUS

11.5 Extracting Wave Functions

ABACUS is able to output electron wave functions in both PW and LCAO basis calculations. One can find the examples
in examples/wfc.

11.5.1 wave function in G space

For the wave function in G space, one only needs to do a ground-state energy calculation with one additional keyword in
the INPUT file: ‘out_wfc_pw’ for PW basis calculation, and ‘out_wfc_lcao’ for LCAO basis calculation. In the PW basis
case, the wave function is output in a file called WAVEFUNC${k}.txt, where ${k} is the index of K point.
In the LCAO basis case, several LOWF_K_${k}.dat files will be output in multi-k calculation and
LOWF_GAMMA_S1.dat in gamma-only calculation.

11.5.2 wave function in real space

One can also choose to output real-space wave function in PW basis calculation with the key word out_wfc_r.
After calculation, an additional directory named wfc_realspace will appear in the OUT.${system} directory.
Notice: when the basis_type is lcao, only get_wf calculation is effective. An example is exam-
ples/wfc/lcao_ienvelope_Si2.

11.6 Extracting Charge Density

ABACUS can output the charge density by adding the keyword out_chg in INPUT file:

out_chg 1

After finishing the calculation, the information of the charge density is stroed in files OUT.${suffix}/
SPIN${spin}_CHG.cube, which can be used to do visualization. The SPIN${spin}_CHG.cube file looks like:

Cubefile created from ABACUS SCF calculation
2 (nspin) 0.914047 (fermi energy, in Ry)
2 0.0 0.0 0.0
27 0.222222 0 0
27 0 0.222222 0
27 0 0 0.222222
26 16 0 0 0
26 16 3 3 3
6.63594288898e-01 8.42344790519e-01 1.16349621677e+00 1.18407505276e+00 8.
↪→04461725175e-01 3.77164277045e-01
1.43308127341e-01 5.93894932356e-02 3.23036576611e-02 2.08414809212e-02 1.
↪→51271068218e-02 1.27012859512e-02
1.15620162933e-02 1.08593210023e-02 1.08593210023e-02 1.15620162933e-02 1.
↪→27012859512e-02 1.51271068218e-02
2.08414809212e-02 3.23036576611e-02 5.93894932356e-02 1.43308127341e-01 3.
↪→77164277045e-01 8.04461725175e-01
1.18407505276e+00 1.16349621677e+00 8.42344790519e-01
8.42344790519e-01 9.86194056340e-01 1.21545550606e+00 1.14987597026e+00 7.
↪→50033272229e-01 3.46047149862e-01
1.32713411550e-01 5.65432381171e-02 3.13971442033e-02 2.04281058891e-02 1.
↪→49536046293e-02 1.26489807288e-02

(continues on next page)

11.5. Extracting Wave Functions 55

https://github.com/deepmodeling/abacus-develop/tree/develop/examples/wfc
https://abacus-rtd.readthedocs.io/en/latest/advanced/input_files/input-main.html#out-wfc-pw
https://abacus-rtd.readthedocs.io/en/latest/advanced/input_files/input-main.html#out-wfc-lcao
https://abacus-rtd.readthedocs.io/en/latest/advanced/input_files/input-main.html#out_wfc_r
https://abacus-rtd.readthedocs.io/en/latest/advanced/input_files/input-main.html#basis_type
https://abacus-rtd.readthedocs.io/en/latest/advanced/input_files/input-main.html#calculation
https://github.com/deepmodeling/abacus-develop/tree/develop/examples/wfc/lcao_ienvelope_Si2
https://github.com/deepmodeling/abacus-develop/tree/develop/examples/wfc/lcao_ienvelope_Si2
https://abacus-rtd.readthedocs.io/en/latest/advanced/input_files/input-main.html#out-chg

ABACUS

(continued from previous page)
1.15432695307e-02 1.08422207044e-02 1.08422207044e-02 1.15432695307e-02 1.
↪→26489807288e-02 1.49536046293e-02
2.04281058891e-02 3.13971442033e-02 5.65432381171e-02 1.32713411550e-01 3.
↪→46047149862e-01 7.50033272229e-01
1.14987597026e+00 1.21545550606e+00 9.86194056340e-01
...

The first line is a brief description.
The second line contains NSPIN and Fermi energy.
The following 4 lines are the informations of lattice, in order:
 total number of atoms, the coordinate of original point.
 the number of lattice points along lattice vector a1 (nx), a1/nx, in Bohr.
 the number of lattice points along lattice vector a2 (ny), a2/ny, in Bohr.
 the number of lattice points along lattice vector a3 (nz), a3/nz, in Bohr.
The following lines are about the elements and coordinates, in order: the atom number of each atoms, the electron number
in pseudopotential, the Cartesian coordinates, in Bohr.
The rest lines are the value of charge density at each grid. Note that the inner loop is z index, followed by y index, x index
in turn.
The examples can be found in examples/charge_density

11.7 Extracting Hamiltonian and Overlap Matrices

In ABACUS, we provide the option to write the Hamiltonian and Overlap matrices to files after SCF calculation.
For periodic systems, there are two ways to represent the matrices, the first is to write the entire square matrices for each
k point, namelyH(k) and S(k); the second is the R space representation,H(R) and S(R), where R is the lattice vector.
The two representations are connected by Fourier transform:

• H(k) =
∑

RH(R)e−ikR

and
• S(k) =

∑
R S(R)e

−ikR

11.7.1 out_mat_hs

Users may set the keyword out_mat_hs to true for outputting the upper triangular part of the Hamiltonian matrices and
overlap matrices for each k point into files in the directory OUT.${suffix}. It is available for both gamma_only and
multi-k calculations.
The files are named data-$k-H and data-$k-S, where $k is a composite index consisting of the k point index as
well as the spin index. The corresponding sequence of the orbitals can be seen in Basis Set.
For nspin = 1 and nspin = 4 calculations, there will be only one spin component, so $k runs from 0 up to $nkpoints-1.
For nspin = 2, $k runs from 2*$nkpoints-1. In the latter case, the files are arranged into blocks of up and down
spins. For example, if there are 3 k points, then we have the following correspondence:

• data-0-H : 1st k point, spin up
• data-1-H : 2nd k point, spin up
• data-2-H : 3rd k point, spin up
• data-3-H : 1st k point, spin down
• data-4-H : 2nd k point, spin down

11.7. Extracting Hamiltonian and Overlap Matrices 56

https://github.com/deepmodeling/abacus-develop/tree/develop/examples/charge_density

ABACUS

• data-5-H : 3rd k point, spin down
As for information on the k points, one may look for the SETUP K-POINTS section in the running log.
The first number of the first line in each file gives the size of the matrix, namely, the number of atomic basis functions in
the system.
The rest of the file contains the upper triangular part of the specified matrices. For multi-k calculations, the matrices are
Hermitian and the matrix elements are complex; for gamma-only calculations, the matrices are symmetric and the matrix
elements are real.

11.7.2 out_mat_hs2

The output of R-space matrices is controlled by the keyword out_mat_hs2. This functionality is not available for
gamma_only calculations. To generate such matrices for gamma only calculations, users should turn off gamma_only,
and explicitly specify that gamma point is the only k point in the KPT file.
For single-point SCF calculations, if nspin = 1 or nspin = 4, two files data-HR-sparse_SPIN0.csr and
data-SR-sparse_SPIN0.csr are generated, which contain the Hamiltonian matrix H(R) and overlap matrix
S(R) respectively. For nspin = 2, three files data-HR-sparse_SPIN0.csr and data-HR-sparse_SPIN1.
csr and data-SR-sparse_SPIN0.csr are created, where the first two contain H(R) for spin up and spin down,
respectively.
As for molecular dynamics calculations, the format is controlled by out_interval and out_app_flag in the same manner as
the position matrix as detailed in out_mat_r.
Each file or each section of the appended file starts with three lines, the first gives the current ion/md step, the second
gives the dimension of the matrix, and the last indicates how many different R are in the file.
The rest of the files are arranged in blocks. Each block starts with a line giving the lattice vector R and the number of
nonzero matrix elements, such as:

-3 1 1 1020

which means there are 1020 nonzero elements in the (-3,1,1) cell.
If there is no nonzero matrix element, then the next block starts immediately on the next line. Otherwise, there will be 3
extra lines in the block, which gives the matrix in CSR format. According to Wikipedia:
The CSR format stores a sparse m × n matrix M in row form using three (one-dimensional) arrays (V, COL_INDEX,
ROW_INDEX). Let NNZ denote the number of nonzero entries in M. (Note that zero-based indices shall be used here.)

• The arrays V and COL_INDEX are of length NNZ, and contain the non-zero values and the column indices of
those values respectively.

• The array ROW_INDEX is of length m + 1 and encodes the index in V and COL_INDEX where the given row
starts. This is equivalent to ROW_INDEX[j] encoding the total number of nonzeros above row j. The last element
is NNZ , i.e., the fictitious index in V immediately after the last valid index NNZ - 1.

11.7. Extracting Hamiltonian and Overlap Matrices 57

ABACUS

11.7.3 get_S

We also offer the option of only calculating the overlap matrix without running SCF. For that purpose, in INPUT file we
need to set the value keyword calculation to be get_S.
A file named SR.csr will be generated in the working directory, which contains the overlap matrix.

11.7.4 examples

We provide examples of outputting the matrices. There are four examples:
• out_hs2_multik : writing H® and S® for multi-k calculation
• out_hs_gammaonly : writing H(k) and S(k) for gamma-only calculation
• out_hs_multik : writing H(k) and S(k) for multi-k calculation
• out_s_multik : running get_S for multi-k calculation

Reference output files are provided in each directory.

11.8 Extracting Density Matrices

ABACUS can output the density matrix by adding the keyword “out_dm” in INPUT file:

out_dm 1

After finishing the calculation, the information of the density matrix is stroed in files OUT.${suffix}/
SPIN${spin}_DM, which looks like:

test
5.39761
0.5 0.5 0
0.5 0 0.5
0 0.5 0.5
Si
2

Direct
0 0 0
0.25 0.25 0.25

1
0.570336288801065 (fermi energy)
26 26

3.904e-01 1.114e-02 2.050e-14 1.655e-13 1.517e-13 -7.492e-15 -1.729e-14 5.915e-15
-9.099e-15 2.744e-14 3.146e-14 6.631e-15 2.594e-15 3.904e-01 1.114e-02 -7.395e-15
...

The first 5 lines are the informations of lattice, in order:
 lattice name (if keyword latname is not specified in INPUT, this will be “test”),
 lattice constance with unit in angstrom,
 lattice vector a,
 lattice vector b,
 lattice vector c.
The following lines are about the elements and coordinates, in order: all elements, the atom number of each elements, the

11.8. Extracting Density Matrices 58

https://github.com/deepmodeling/abacus-develop/tree/develop/examples/matrix_hs
https://abacus-rtd.readthedocs.io/en/latest/advanced/input_files/input-main.html#out-dm
https://abacus-rtd.readthedocs.io/en/latest/advanced/input_files/input-main.html#latname

ABACUS

type of coordinate, the coordinates.
After a blank line, the output is the values of NSPIN and fermi energy.
The following line is dimension of the density matrix, and the rest lines are the value of each matrix element.
The examples can be found in examples/density_matrix

• Note: now this function is valid only for LCAO gamma only calcualtion.

11.9 Berry Phase Calculation

From version 2.0.0, ABACUS is capable of calculating macroscopic polarization of insulators by using the Berry phase
method, known as the “modern theory of polarization”. To calculate the polarization, you need first to do a self-consistent
calculation to get the converged charge density. Then, do a non-self-consistent calculation with berry_phase setting to
1. You need also to specify the direction of the polarization you want to calculate. An example is given in the directory
examples/berryphase/lcao_PbTiO3.
To run this example, first do a self-consistent calculation:

cp INPUT-scf INPUT
cp KPT-scf KPT
mpirun -np 4 abacus

Then run a non-self-consistent berry-phase calculation:

cp INPUT-nscf-c INPUT
cp KPT-nscf-c KPT
mpirun -np 4 abacus

In this example, we calculate the electric polarization along c axis for PbTiO~3~, and below are the INPUT file (nscf)
and KPT file (nscf):

INPUT_PARAMETERS
pseudo_dir ../../../tests/PP_ORB //the path to locate the pesudopotential files
orbital_dir ../../../tests/PP_ORB //the path to locate the numerical orbital␣
↪→files
ntype 3
ecutwfc 50 // Ry
symmetry 0 // turn off symmetry
calculation nscf // non-self-consistent calculation
basis_type lcao // atomic basis
init_chg file // read charge from files
berry_phase 1 // calculate Berry phase
gdir 3 // calculate polarization along c axis

Note: You need to turn off the symmetry when do Berry phase calculations. Currently, ABACUS support Berry phase
calculation with nspin=1 and nspin=2. The Berry phase can be calculated in both pw and lcao bases.

• berry_phase : 1, calculate berry phase; 0, no calculate berry phase.
• gdir : 1, 2, 3, the lattice vector direction of the polarization you want to calculate.

The KPT file need to be modified according to gdir in the INPUT file. Generally, you need denser k points along this
direction. For example, in the following KPT file, 4 k-points are taken along the a and b axes, and 8 k-points are taken
along the c-axis. You should check the convergence of the k points when calculating the polarization.

K_POINTS
0

(continues on next page)

11.9. Berry Phase Calculation 59

https://github.com/deepmodeling/abacus-develop/tree/develop/examples/density_matrix
https://www.sciencedirect.com/science/article/abs/pii/S0022459612003234
https://github.com/deepmodeling/abacus-develop/tree/develop/examples/berryphase/lcao_PbTiO3

ABACUS

(continued from previous page)
Gamma
4 4 8 0 0 0

The results of the berry phase calculation are written in the “running_nscf.log” in the OUT folder. You may search for
these results by searching for keywords “POLARIZATION CALCULATION”.
The results are shown as follows:

>>
| |
| POLARIZATION CALCULATION: |
| Modern Theory of Polarization |
| calculate the Macroscopic polarization of a crystalline insulator |
| by using Berry Phase method. |
| |
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

VALUES OF POLARIZATION

The Ionic Phase: -0.10600
Electronic Phase: 0.92508

The calculated polarization direction is in R3 direction

P = 7.4095194 (mod 18.0922373) (0.0000000, 0.0000000, 7.4095194) (e/
↪→Omega).bohr

P = 0.0155792 (mod 0.0380407) (0.0000000, 0.0000000, 0.0155792) e/
↪→bohr^2

P = 0.8906925 (mod 2.1748536) (0.0000000, 0.0000000, 0.8906925) C/m^2

The electric polarization P is multivalued, which modulo a quantum eR/V~cell~. Note: the values in parentheses are the
components of the P along the c axis in the x, y, z Cartesian coordinates when set gdir = 3 in INPUT file.

11.9. Berry Phase Calculation 60

CHAPTER

TWELVE

INTERFACES TO OTHER SOFTWARES

12.1 DeePKS

DeePKS is a machine-learning aided density funcitonal model that fits the energy difference between highly accurate
but computationally demanding method and effcient but less accurate method via neural-network. As such, the trained
DeePKS model can provide highly accurate energetics (and forces) with relatively low computational cost, and can there-
fore act as a bridge to connect expensive quantum mechanic data and machine-learning-based potentials. While the
original framework of DeePKS is for molecular systems, please refer to this reference for the application of DeePKS in
periodic systems.
Detailed instructions on installing and running DeePKS can be found on this website. An example for training DeePKS
model with ABACUS is also provided. The DeePKS-related keywords in INPUT file can be found here.

Note: Use the LCAO basis for DeePKS-related calculations

12.2 DP-GEN

DP-GEN, the deep potential generator, is a package designed to generate deep learning based model of interatomic
potential energy and force fields (Yuzhi Zhang, Haidi Wang, Weijie Chen, Jinzhe Zeng, Linfeng Zhang, Han Wang, and
Weinan E, DP-GEN: A concurrent learning platform for the generation of reliable deep learning based potential energy
models, Computer Physics Communications, 2020, 107206). ABACUS can now interface with DP-GEN to generate
deep potentials and perform autotests. The minimum recommended version is ABACUS 3.0, dpdata 0.2.8, and dpgen
0.10.7 . In the following part, we take the FCC aluminum as an example.

12.2.1 init_bulk and run

This example can be found in examples/dpgen-example/init_and_run directory.
Firstly, one needs to prepare input files for ABACUS calculation, e.g., “INPUT”, “INPUT.md”, “KPT”, “Al.STRU”,
“Al_ONCV_PBE-1.0.upf”, which are the main input file containing input tags, k-point mesh, crystal structure and pseu-
doptential, respectively. “INPUT” is for scf calculation, and “INPUT.md” is for AIMD (ab-initio molecular dynamic)
calculation.
Secondly, for the “dpgen init_bulk” step, an init.json file should be provided:

{
"init_fp_style": "ABACUS", # abacus interface
"stages": [1,2,3,4],
"cell_type": "fcc",
"super_cell": [2, 1, 1],

(continues on next page)

61

https://pubs.acs.org/doi/10.1021/acs.jctc.0c00872
https://arxiv.org/abs/2206.10093
https://deepks-kit.readthedocs.io/en/latest/index.html
https://github.com/deepmodeling/deepks-kit/tree/abacus/examples/water_single_lda2pbe_abacus
http://abacus.deepmodeling.com/en/latest/advanced/input_files/input-main.html#deepks
https://github.com/deepmodeling/dpgen
http://INPUT.md
http://INPUT.md

ABACUS

(continued from previous page)
"elements": ["Al"],
"from_poscar": true,
"from_poscar_path": "./Al.STRU",
"potcars": ["Al_ONCV_PBE-1.0.upf"],
"relax_incar": "INPUT",
"relax_kpt": "KPT",
"md_incar" : "INPUT.md",
"md_kpt" : "KPT",
"skip_relax": false,
"scale": [1.00],
"pert_numb": 10,
"pert_box": 0.01,
"pert_atom": 0.01,
"coll_ndata": 10,
"_comment": "that's all"

}

Next, for the “dpgen run” step, the following run_param.json should be provided.

{
"type_map": [

"Al"
],
"mass_map": [

26.9815
],
"init_data_prefix": "./",
"init_data_sys": [

"Al.STRU.01x01x01/02.md/sys-0004/deepmd"
],
"sys_format": "abacus/stru", # the initial structures are in ABACUS/STRU formate
"sys_configs_prefix": "./",
"sys_configs": [

[
"Al.STRU.01x01x01/01.scale_pert/sys-0004/scale*/00000*/STRU"

],
[

"Al.STRU.01x01x01/01.scale_pert/sys-0004/scale*/000010/STRU"
]

],
"_comment": " 00.train ",
"numb_models": 4,
"default_training_param": {

"model": {
"type_map": [

"Al"
],
"descriptor": {

"type": "se_e2_a",
"sel": [

16
],
"rcut_smth": 0.5,
"rcut": 5.0,
"neuron": [

10,
20,

(continues on next page)

12.2. DP-GEN 62

ABACUS

(continued from previous page)
40

],
"resnet_dt": true,
"axis_neuron": 12,
"seed": 1

},
"fitting_net": {

"neuron": [
25,
50,
100

],
"resnet_dt": false,
"seed": 1

}
},
"learning_rate": {

"type": "exp",
"start_lr": 0.001,
"decay_steps": 100

},
"loss": {

"start_pref_e": 0.02,
"limit_pref_e": 2,
"start_pref_f": 1000,
"limit_pref_f": 1,
"start_pref_v": 0.0,
"limit_pref_v": 0.0

},
"training": {

"stop_batch": 20000,
"disp_file": "lcurve.out",
"disp_freq": 1000,
"numb_test": 4,
"save_freq": 1000,
"save_ckpt": "model.ckpt",
"disp_training": true,
"time_training": true,
"profiling": false,
"profiling_file": "timeline.json",
"_comment": "that's all"

}
},
"_comment": "01.model_devi ",
"model_devi_dt": 0.002,
"model_devi_skip": 0,
"model_devi_f_trust_lo": 0.05,
"model_devi_f_trust_hi": 0.15,
"model_devi_clean_traj": false,
"model_devi_jobs": [

{
"sys_idx": [

0
],
"temps": [

50
],

(continues on next page)

12.2. DP-GEN 63

ABACUS

(continued from previous page)
"press": [

1.0
],
"trj_freq": 10,
"nsteps": 300,
"ensemble": "nvt",
"_idx": "00"

},
{

"sys_idx": [
1

],
"temps": [

50
],
"press": [

1.0
],
"trj_freq": 10,
"nsteps": 3000,
"ensemble": "nvt",
"_idx": "01"

}
],
"fp_style": "abacus/scf",
"shuffle_poscar": false,
"fp_task_max": 20,
"fp_task_min": 5,
"fp_pp_path": "./",
"fp_pp_files": ["Al_ONCV_PBE-1.0.upf"], # the pseudopotential file
"fp_orb_files": ["Al_gga_9au_100Ry_4s4p1d.orb"], # the orbital file (use only in␣

↪→LCAO calculation)
"k_points":[2, 2, 2, 0, 0, 0], # k-mesh setting
"user_fp_params":{ # All the ABACUS input paramters are defined here
"ntype": 1, # defining input parameters from INPUT files is not supported␣

↪→yet.
"ecutwfc": 80,
"mixing_type": "broyden",
"mixing_beta": 0.8,
"symmetry": 1,
"nspin": 1,
"ks_solver": "cg",
"smearing_method": "mp",
"smearing_sigma": 0.002,
"scf_thr":1e-8,
"cal_force":1, # calculate force must be set to 1 in dpgen calculation
"kspacing": 0.01 # when KSPACING is set, the above k_points setting becomes␣

↪→invalid.
}

}

12.2. DP-GEN 64

ABACUS

12.2.2 autotest

This example can be found in examples/dpgen-example/autotest directory.
dpgen autotest supports to perform relaxation,eos (equation of state),elastic,surface,vacancy, and
interstitial calculations with ABACUS. A property.json and machine.json file need to be provided.
For example,
property.json:

{
"structures": ["confs/"],
"interaction": {

"type": "abacus",
"incar": "./INPUT",
"potcar_prefix":"./",
"potcars": {"Al": "Al.PD04.PBE.UPF"},
"orb_files": {"Al":"Al_gga_10au_100Ry_3s3p2d.orb"}

},
"_relaxation": {

"cal_type": "relaxation",
"cal_setting":{

"input_prop": "./INPUT.rlx"
}

},
"properties": [

{
"type": "eos",
"vol_start": 0.85,
"vol_end": 1.15,
"vol_step": 0.01,
"cal_setting": {

"relax_pos": true,
"relax_shape": true,
"relax_vol": false,
"overwrite_interaction":{

"type": "abacus",
"incar": "./INPUT",
"potcar_prefix":"./",
"orb_files": {"Al":"Al_gga_10au_100Ry_3s3p2d.orb

↪→"},
"potcars": {"Al": "Al.PD04.PBE.UPF"} }

}
},
{
"type": "elastic",
"skip": false,
"norm_deform": 1e-2,
"shear_deform": 1e-2
},
{
"type": "vacancy",
"skip": false,
"supercell": [2, 2, 2]
},
{
"type": "surface",
"skip": true,

(continues on next page)

12.2. DP-GEN 65

ABACUS

(continued from previous page)
"min_slab_size": 15,
"min_vacuum_size":11,
"pert_xz": 0.01,
"max_miller": 3,
"cal_type": "static"
}
]

}

machine.json

{
"api_version": "1.0",
"deepmd_version": "2.1.0",
"train" :[
{

"command": "dp",
"machine": {

"batch_type": "DpCloudServer",
"context_type": "DpCloudServerContext",
"local_root" : "./",
"remote_profile":{
"email": "xxx@xxx.xxx",
"password": "xxx",
"program_id": 000,
"input_data":{

"api_version":2,
"job_type": "indicate",
"log_file": "00*/train.log",
"grouped":true,
"job_name": "Al-train-VASP",
"disk_size": 100,
"scass_type":"c8_m32_1 * NVIDIA V100",
"platform": "ali",
"image_name":"LBG_DeePMD-kit_2.1.0_v1",
"on_demand":0

}
}

},
"resources": {

"number_node":123473334635,
"local_root":"./",
"cpu_per_node": 4,
"gpu_per_node": 1,
"queue_name": "GPU",
"group_size": 1

}
}],

"model_devi":
[{

"command": "lmp -i input.lammps -v restart 0",
"machine": {

"batch_type": "DpCloudServer",
"context_type": "DpCloudServerContext",
"local_root" : "./",
"remote_profile":{
"email": "xxx@xxx.xxx",

(continues on next page)

12.2. DP-GEN 66

ABACUS

(continued from previous page)
"password": "xxx",
"program_id": 000,
"input_data":{
"api_version":2,
"job_type": "indicate",
"log_file": "*/model_devi.log",
"grouped":true,
"job_name": "Al-devia-ABACUS",
"disk_size": 200,
"scass_type":"c8_m32_1 * NVIDIA V100",
"platform": "ali",
"image_name":"LBG_DeePMD-kit_2.1.0_v1",
"on_demand":0

}
}

},
"resources": {

"number_node": 28348383,
"local_root":"./",
"cpu_per_node": 4,
"gpu_per_node": 1,
"queue_name": "GPU",
"group_size": 100

}
}],

"fp":
[{

"command": "OMP_NUM_THREADS=1 mpirun -np 16 abacus",
"machine": {

"batch_type": "DpCloudServer",
"context_type": "DpCloudServerContext",
"local_root" : "./",
"remote_profile":{
"email": "xxx@xxx.xxx",
"password": "xxx",

"program_id": 000,
"input_data":{
"api_version":2,
"job_type": "indicate",
"log_file": "task*/fp.log",
"grouped":true,
"job_name": "al-DFT-test",
"disk_size": 100,
"scass_type":"c32_m128_cpu",
"platform": "ali",
"image_name":"XXXXX",
"on_demand":0

}
}

},
"resources": {

"number_node": 712254638889,
"cpu_per_node": 32,
"gpu_per_node": 0,
"queue_name": "CPU",
"group_size": 2,
"local_root":"./",

(continues on next page)

12.2. DP-GEN 67

ABACUS

(continued from previous page)
"source_list": ["/opt/intel/oneapi/setvars.sh"]

}
}

]
}

For each property, the command dpgen autotest make property.json will generate the input files, dpgen
autotest run property.json machine.json will run the corresponding tasks, and dpgen autotest
post property.json will collect the final results.
Notes:

• The ABACUS-DPGEN interface can be used in both pw and lcao basis.

12.3 DeepH

DeepH applies meaching learning to predict the Hamiltonian in atomic basis representation. For such purpose, DeepH
uses the Hamiltonian and overlap matrices from DFT calculations. Here we introduce how to extract relevant information
from ABACUS for the purpose of DeepH training and prediction.
Detailed instructions on installing and running DeepH can be found on its official website. An example for using DeepH
with ABACUS is also provided.
Here I intend not to repeat information from the above sources, but to add some minor details related to the setting of
ABACUS INPUT files.

Note: Use the LCAO basis for DeepH-related calculations
As mentioned in the README.md file in the above-mentioned example, there are two stages where users need to run
ABACUS calculations.
The first stage is during the data preparation phase, where we need to run a series of SCF calculations and output the
Hamiltonian and overlap matrices. For such purpose, one needs to add the following line in the INPUT file:

out_mat_hs2 1

Files named data-HR-sparse_SPIN${x}.csr and data-SR-sparse_SPIN${x}.csr will be generated, which contain the
Hamiltonian and overlap matrices respectively in csr format. ${x} takes value of 0 or 1, based on the spin component.
More details on this keyword can be found in the list of input keywords.
The second stage is during the inference phase. After DeepH training completes, we can apply the model to predict the
Hamiltonian on other systems. For that purpose, we also need the overlap matrices from the new systems, but no SCF
calculation is required.
For that purpose, in INPUT file we need to make the following specification of the keyword calculation:

calculation get_S

A file named SR.csr will be generated in the working directory, which contains the overlap matrix.

12.3. DeepH 68

https://doi.org/10.1038/s43588-022-00265-6
https://deeph-pack.deepmodeling.com/en/latest/#deeph
https://deeph-pack.deepmodeling.com/en/latest/demo/demo3.html
http://README.md

ABACUS

12.4 Hefei-NAMD

Hefei-NAMDNon-adiabatic molecular dynamics applies surface hopping to incorporate quantummechanical effects into
molecular dynamics simulations. Surface hopping partially incorporates the non-adiabatic effects by including excited
adiabatic surfaces in the calculations, and allowing for ‘hops’ between these surfaces.
Detailed instructions on installing and running Hefei-NAMD can be found on its official website.
ABACUS provides results of molecular dynamics simulations for Hefei-NAMD to do non-adiabatic molecular dynamics
simulations.
The steps are as follows :

1. Add output parameters in INPUT when running MD using ABACUS .

out_wfc_lcao 1
out_mat_hs 1

Then we obtain output files of hamiltonian matrix, overlap matrix, and wavefunction to do NAMD simulation.
2. Clone Hefei-NAMD codes optimized for ABACUS from website.
3. Modify parameters in Args.py including directory of ABACUS output files and NAMD parameters. We can

see detailed explanation for all parameters in Args.py.
4. Run NAC.py to prepare related files for NAMD simulations.

sbatch sub_nac

5. Run SurfHop.py to perform NAMD simulations.

sbatch sub_sh

And results are under directory namddir in Args.py.

12.5 Phonopy

Phonopy is a powerful package to calculate phonon and related properties. The ABACUS interface has been added in
Phonopy v.2.19.1. In the following, we take the FCC aluminum as an example:

1. To obtain supercells (2× 2× 2) with displacements, run phonopy:

phonopy -d --dim="2 2 2" --abacus

2. Calculate forces on atoms in the supercells with displacements. For each SCF calculation, you should specify
stru_filewith STRU-{number} and cal_force=1 in INPUT in order to calculate force using ABACUS.
Be careful not to relax the structures

echo 'stru_file ./STRU-001' >> INPUT

3. Then create ‘FORCE_SETS’ file using ABACUS inteface:

phonopy -f ./disp-{number}/OUT*/running*.log

4. Calculate the phonon dispersion:

12.4. Hefei-NAMD 69

https://github.com/QijingZheng/Hefei-NAMD
http://staff.ustc.edu.cn/~zqj/posts/Hefei-NAMD-Training/
https://github.com/vtzf/abacus-namd
https://phonopy.github.io/phonopy

ABACUS

phonopy band.conf --abacus

using the following band.conf file:

ATOM_NAME = Al
DIM = 2 2 2
MESH = 8 8 8
PRIMITIVE_AXES = 0 1/2 1/2 1/2 0 1/2 1/2 1/2 0
BAND= 1 1 1 1/2 1/2 1 3/8 3/8 3/4 0 0 0 1/2 1/2 1/2
BAND_POINTS = 21
BAND_CONNECTION = .TRUE.

12.6 Wannier90

Wannier90 is a useful package to generating the maximally-localized Wannier functions (MLWFs), which can be used to
compute advanced electronic properties. Some post-processing tools (such as WannierTools, etc.) will use MLWFs for
further analysis and calculations.
Currently ABACUS provides an interface to Wannier90 package. The users are assumed to be familiar with the use of
Wannier90. The ABACUS-Wannier90 interface is only suitable for nspin=1 or 2, not for nspin=4 or spin-orbit coupling
(SOC).
To construct the MLWFs using the wave functions of ABACUS generally requires four steps. Here we use the diamond
as an example which can be found in examples/interface_wannier90/.

1. Enter the ABACUS_towannier90/ folder, prepare a Wannier90 input file diamond.win, which is the main
input file for Wannier90. Then To generate diamond.nnkp file by running Wannier90, which ABACUS will
read later:

wannier90 -pp diamond.win

The content of diamond.win is as follows:

num_wann = 4
num_iter = 20

wannier_plot=.true.
wannier_plot_supercell = 3
wvfn_formatted = .true.

begin atoms_frac
C -0.12500 -0.1250 -0.125000
C 0.12500 0.1250 0.125000
end atoms_frac

begin projections
f=0.0,0.0,0.0:s
f=0.0,0.0,0.5:s
f=0.0,0.5,0.0:s
f=0.5,0.0,0.0:s
end projections

begin unit_cell_cart
-1.613990 0.000000 1.613990
0.000000 1.613990 1.613990

(continues on next page)

12.6. Wannier90 70

http://www.wannier.org/
https://github.com/abacusmodeling/abacus-develop/tree/develop/examples/interface_wannier90

ABACUS

(continued from previous page)
-1.613990 1.613990 0.000000
end unit_cell_cart

mp_grid : 4 4 4

begin kpoints
0.0000 0.0000 0.0000
0.0000 0.2500 0.0000
0.0000 0.5000 0.0000
0.0000 0.7500 0.0000
...
end kpoints

2. Do a self-consistent calculation and get the converged charge density:

cp INPUT-scf INPUT
cp KPT-scf KPT
mpirun -np 4 abacus

3. Do a non-self-consistent calculation:

cp INPUT-nscf INPUT
cp KPT-nscf KPT
mpirun -np 4 abacus

below are the INPUT file (nscf):

INPUT_PARAMETERS

ntype 1
ecutwfc 50
nbands 4
calculation nscf
scf_nmax 50
pw_diag_thr 1.0e-12
scf_thr 1.0e-15
init_chg file
symmetry 0
towannier90 1
nnkpfile diamond.nnkp

There are seven interface-related parameters in the INPUT file:
• towannier90: 1, generate files for wannier90 code; 0, do not generate.
• nnkpfile : the name of the file generated by running “wannier90 -pp …”.
• wannier_spin: If you use nspin=2, up: calculate the Wannier functions for the spin up components ; down:
calculate the Wannier functions spin down components.

• out_wannier_mmn: control whether to output the “*.mmn” file.
• out_wannier_amn: control whether to output the “*.amn” file.
• out_wannier_eig: control whether to output the “*.eig” file.
• out_wannier_unk: control whether to output the “UNK.*” file.
• out_wannier_wvfn_formatted: control what format of the Wannier function file to output, true: output the
formatted text file; false: output the binary file. Note that the wvfn_formatted option in *.win file

12.6. Wannier90 71

ABACUS

(input file of Wannier90) has to be set accordingly with this option.
Note: You need to turn off the symmetry during the entire nscf calculation.
To setup the KPT file according to the diamond.win file, which is similar to “begin kpoints …” in the
diamond.win file:

K_POINTS
64
Direct
0.0000 0.0000 0.0000 0.0156250
0.0000 0.2500 0.0000 0.0156250
0.0000 0.5000 0.0000 0.0156250
0.0000 0.7500 0.0000 0.0156250
...

After the nscf calculation, ABACUS will generate diamond.amn, diamond.mmn, diamond.eig, UNK files
in the OUT. folder which are input files needed by Wannier90 code.

4. Copy .amn, .mmn, .eig, UNK file to wannier/ folder, to get the MLWFs by running Wannier90:

wannier90 diamond.win

Notes:
• The ABACUS-wannier90 interface can be used in both PW and LCAO basis.
• If you want to plot the Wannier function, you must set wvfn_formatted = .true. in diamond.win,
otherwise Wannier90 code cannot read files generated by ABACUS because these files are not binary files. You
also have to generate the diamond.amn and UNK files for the plot. Otherwise, the two types of file are not
necessary.

12.7 ASE

12.7.1 Introduction

ASE (Atomic Simulation Environment) provides a set of Python tools for setting, running, and analysing atomic simula-
tions. We have developed an ABACUS calculator (ase-abacus) to be used together with the ASE tools, which exists as
an external project with respect to ASE and is maintained by ABACUS developers.

12.7.2 Installation

git clone https://gitlab.com/1041176461/ase-abacus.git
cd ase-abacus
python3 setup.py install

12.7. ASE 72

https://wiki.fysik.dtu.dk/ase/
https://gitlab.com/1041176461/ase-abacus

ABACUS

12.7.3 Environment variables

ABACUS supports two types of basis sets: PW, LCAO. The path of pseudopotential and numerical orbital files can be
set throught the environment variables ABACUS_PP_PATH and ABACUS_ORBITAL_PATH, respectively, e.g.:

PP=${HOME}/pseudopotentials
ORB=${HOME}/orbitals
export ABACUS_PP_PATH=${PP}
export ABACUS_ORBITAL_PATH=${ORB}

For PW calculations, only ABACUS_PP_PATH is needed. For LCAO calculations, both ABACUS_PP_PATH and ABA-
CUS_ORBITAL_PATH should be set.

12.7.4 ABACUS Calculator

The default initialization command for the ABACUS calculator is

from ase.calculators.abacus import Abacus

In order to run a calculation, you have to ensure that at least the following parameters are specified, either in the initial-
ization or as environment variables:

key-
word

description

pp dict of pseudopotentials for involved elememts, such as pp={'Al':'Al_ONCV_PBE-1.0.upf',...}.
pseudo_dirdirectory where the pseudopotential are located, Can also be specified with the ABACUS_PP_PATH environ-

ment variable. Default: pseudo_dir=./.
ba-
sis

dict of orbital files for involved elememts, such as basis={'Al':'Al_gga_10au_100Ry_4s4p1d.
orb'}. It must be set if you want to do LCAO calculations. But for pw calculations, it can be omitted.

ba-
sis_dir

directory where the orbital files are located, Can also be specified with the ABACUS_ORBITAL_PATH envi-
ronment variable. Default: basis_dir=./.

xc which exchange-correlation functional is used. An alternative way to set this parameter is via seting
dft_functional which is an ABACUS parameter used to specify exchange-correlation functional

kpts a tuple (or list) of 3 integers kpts=(int, int, int), it is interpreted as the dimensions of a Monkhorst-
Pack grid, when kmode is Gamma or MP. It is interpreted as k-points, when kmode is Direct, Cartesian
or Line, and knumber should also be set in these modes to denote the number of k-points. Some other
parameters for k-grid settings: including koffset and kspacing.

For more information on pseudopotentials and numerical orbitals, please visit [ABACUS]. The elaboration of input pa-
rameters can be found here.
The input parameters can be set like::

calc = Abacus(profile=profile, ntype=1, ecutwfc=50, scf_nmax=50, smearing_method=
↪→'gaussian', smearing_sigma=0.01, basis_type='pw', ks_solver='cg', calculation='scf'␣
↪→pp=pp, basis=basis, kpts=kpts)

The command to run jobs can be set by specifying AbacusProfile::

from ase.calculators.abacus import AbacusProfile
abacus = '/usr/local/bin/abacus'
profile = AbacusProfile(argv=['mpirun','-n','2',abacus])

in which abacus sets the absolute path of the abacus executable.

12.7. ASE 73

http://abacus.ustc.edu.cn

ABACUS

12.7.5 MD Analysis

After molecular dynamics calculations, the log file running_md.log can be read. If the ‘STRU_MD_*’ files are not
continuous (e.g. ‘STRU_MD_0’, ‘STRU_MD_5’, ‘STRU_MD_10’…), the index parameter of read should be as a slice
object. For example, when using the command read('running_md.log', index=slice(0, 15, 5),
format='abacus-out') to parse ‘running_md.log’, ‘STRU_MD_0’, ‘STRU_MD_5’ and ‘STRU_MD_10’ will be
read.

12.7.6 SPAP Analysis

SPAP (Structure Prototype Analysis Package) is written by Dr. Chuanxun Su to analyze symmetry and compare similarity
of large amount of atomic structures. The coordination characterization function (CCF) is used to measure structural
similarity. An unique and advanced clustering method is developed to automatically classify structures into groups.
If you use this program and method in your research, please read and cite the publication:
Su C, Lv J, Li Q, Wang H, Zhang L, Wang Y, Ma Y. Construction of crystal structure
prototype database: methods and applications. J Phys Condens Matter. 2017 Apr
26;29(16):165901.

and you should install it first with command pip install spap.

12.8 PYATB

12.8.1 Introduction

PYATB (Python ab initio tight binding simulation package) is an open-source software package designed for computing
electronic structures and related properties based on the ab initio tight binding Hamiltonian. The Hamiltonian can be
directly obtained after conducting self-consistent calculations with ABACUS using numerical atomic orbital (NAO) bases.
The package comprises three modules - Bands, Geometric, and Optical, each providing a comprehensive set of tools for
analyzing different aspects of a material’s electronic structure.

12.8.2 Installation

git clone https://github.com/pyatb/pyatb.git
cd pyatb
python setup.py install --record log

To customize the setup.py file, you must make changes to the CXX and LAPACK_DIR variables in line with your
environment. CXX denotes the C++ compiler you intend to use, for instance, icpc (note that it should not be the mpi
version). Furthermore, LAPACK_DIR is used to specify the Intel MKL path.
After completing the installation process, you can access the pyatb executable and corresponding module, which can
be imported using the import pyatb command.

12.8. PYATB 74

https://github.com/chuanxun/StructurePrototypeAnalysisPackage
https://github.com/pyatb/pyatb

ABACUS

12.8.3 How to use

We take Bi2Se3 as an example to illustrate how to use ABACUS to generate the tight binding Hamiltonian required for
PYATB, and then perform calculations related to PYATB functions.

1. Perform ABACUS self consistent calculation:

INPUT_PARAMETERS

System variables
suffix Bi2Se3
ntype 2
calculation scf
esolver_type ksdft
symmetry 1
init_chg atomic

Plane wave related variables
ecutwfc 100

Electronic structure
basis_type lcao
ks_solver genelpa
nspin 4
smearing_method gauss
smearing_sigma 0.02
mixing_type broyden
mixing_beta 0.7
scf_nmax 200
scf_thr 1e-8
lspinorb 1
noncolin 0

Variables related to output information
out_chg 1
out_mat_hs2 1
out_mat_r 1

After the key parameters out_mat_hs2 and out_mat_r are turned on, ABACUS will generate files containing the
Hamiltonian matrixH(R), overlap matrix S(R), and dipole matrix r(R) after completing the self-consistent calculation.
These parameters can be found in the ABACUS INPUT file.

2. Copy the HR, SR, and rR files output by ABACUS’s self-consistent calculation, which are located in
the OUT* directory and named data-HR-sparse_SPIN0.csr, data-SR-sparse_SPIN0.csr, and
data-rR-sparse.csr, respectively. Copy these files to the working directory and write the Input file for
PYATB:

INPUT_PARAMETERS
{

nspin 4
package ABACUS
fermi_energy 9.557219691497478
fermi_energy_unit eV
HR_route data-HR-sparse_SPIN0.csr
SR_route data-SR-sparse_SPIN0.csr
rR_route data-rR-sparse.csr
HR_unit Ry
rR_unit Bohr

(continues on next page)

12.8. PYATB 75

ABACUS

(continued from previous page)
max_kpoint_num 8000

}

LATTICE
{

lattice_constant 1.8897162
lattice_constant_unit Bohr
lattice_vector
-2.069 -3.583614 0.000000
2.069 -3.583614 0.000000
0.000 2.389075 9.546667

}

BAND_STRUCTURE
{

wf_collect 0
kpoint_mode line
kpoint_num 5
high_symmetry_kpoint
0.00000 0.00000 0.0000 100 # G
0.00000 0.00000 0.5000 100 # Z
0.50000 0.50000 0.0000 100 # F
0.00000 0.00000 0.0000 100 # G
0.50000 0.00000 0.0000 1 # L

}

For specific input file writing, please refer to PYATB’s quick start.
3. Perform PYATB calculation:

export OMP_NUM_THREADS=2
mpirun -np 6 pyatb

After the calculation is completed, the band structure data and figures of Bi2Se3 can be found in the Out/
Band_Structure folder.

12.9 ShengBTE

12.9.1 Introduction

This tutorial aims to introduce the process of performing density functional theory calculations using ABACUS and
calculating lattice thermal conductivity using the ShengBTE software. During the entire calculation process, the following
external software are also used: 1) Phonopy for calculating second-order force constants, 2) ASE for converting atomic
structures, 3) ShengBTE’s thirdorder program for calculating third-order force constants, and 4) finally using ShengBTE
to calculate the material’s lattice thermal conductivity.
Here is the announcement of ShengBTE with ABACUS: ShengBTE - The ABACUS DFT software can now be used with
ShengBTE
Some external packages that need to be combined are mentioned above, and here it is recommended to read the relevant
documentation and instructions of these packages:
ShengBTE2/7https://bitbucket.org/sousaw/shengbte/src/master/
phonopy2/7http://abacus.deepmodeling.com/en/latest/advanced/interface/phonopy.html

12.9. ShengBTE 76

https://www.shengbte.org/announcements/the-abacus-dft-software-can-now-be-used-with-shengbte
https://www.shengbte.org/announcements/the-abacus-dft-software-can-now-be-used-with-shengbte
https://bitbucket.org/sousaw/shengbte/src/master/
http://abacus.deepmodeling.com/en/latest/advanced/interface/phonopy.html

ABACUS

ASE2/7http://abacus.deepmodeling.com/en/latest/advanced/interface/ase.html
thirdorder: https://bitbucket.org/sousaw/thirdorder/src/master/

12.9.2 Prepare

The ABACUS software package provides an example of using ABACUS+ShengBTE to calculate the lattice thermal
conductivity in the examples/interface_ShengBTE folder. The example includes two folders: LCAO (Linear
Combination of Atomic Orbitals) which uses numerical atomic orbitals and PW (Plane wave) which uses plane wave basis
vectors. Each folder contains three subfolders: 2nd, 3rd, and shengbte, which respectively store the relevant files for
calculating second-order force constants using Phonopy (2nd), third-order force constants using the thirdorder program
(3rd), and lattice thermal conductivity using ShengBTE (shengbte).

12.9.3 How to use

Taking the LCAO folder as an example, we provide the test case of a diamond structure Si structure contain-
ing 2 atoms with the norm-conserving pseudopotential Si_ONCV_PBE-1.0.upf and the atomic orbital file
Si_gga_7au_100Ry_2s2p1d.orb (GGA functional, 7 a.u. cut-off radius, 100 Ry energy cut-off, and DZP orbitals
containing 2s2p1d).

1. Calculating the second-order force constants

It would be best to combine Phonopy and ASE with ABACUS to calculate the second-order force constants. First, enter
the 2nd folder.

1.1 Structure optimization

Before performing lattice thermal conductivity calculations, it is necessary to optimize the atomic configuration of the
simulated material system. The following is the atomic configuration file STRU obtained after structure optimization
(relax) using ABACUS. In this example, for simplicity, a 2*2*2 Brillouin zone k-point sampling was used in the structure
optimization process, with an energy cutoff value of 100 Ry for plane waves (the plane wave basis vector is also used in
LCAO). Note that the actual calculation should use more convergent k-point sampling.

ATOMIC_SPECIES
Si 28.0855 Si_ONCV_PBE-1.0.upf

NUMERICAL_ORBITAL
Si_gga_7au_100Ry_2s2p1d.orb

LATTICE_CONSTANT
1.88972612546

LATTICE_VECTORS
0 2.81594778072 2.81594778072 #latvec1
2.81594778072 0 2.81594778072 #latvec2
2.81594778072 2.81594778072 0 #latvec3

ATOMIC_POSITIONS
Direct # direct coordinate

Si #label
0 #magnetism

(continues on next page)

12.9. ShengBTE 77

http://abacus.deepmodeling.com/en/latest/advanced/interface/ase.html
https://bitbucket.org/sousaw/thirdorder/src/master/

ABACUS

(continued from previous page)
2 #number of atoms
0.875 0.875 0.875 m 0 0 0
0.125 0.125 0.125 m 0 0 0

1.2 Calculating the second-order force constants

The Phonopy software is called to generatemultiple atomic configurations of the supercell and corresponding perturbations
needed for calculation with the following command:

phonopy setting.conf --abacus -d

where the setting.conf file reads:

DIM = 2 2 2
ATOM_NAME = Si

In this Si example, we only need to generate one perturbed atomic configuration, STRU-001. Perform SCF calculations
(SCF stands for Self-Consistent Field and represents the iterative self-consistent calculation of density functional theory)
on all perturbed configurations (in this case, there is only one for Si) to obtain the forces on the atoms. Afterward, use
the following command to generate the FORCE_SET file:

phonopy -f OUT.DIA-50/running_scf.log

Tip: In the input file INPUT of ABACUS, you can set the variable stru_file, which corresponds to the atomic
configuration file STRU-001, and ABACUS will read the structure file directly.
Next, set the band.conf file to calculate the phonon spectrum and the second-order force constants:

phonopy -p band.conf --abacus

The band.conf file mentioned here contains the following contents (you can refer to the Phonopy documentation for
specific parameter meanings):

ATOM_NAME = Si
DIM = 2 2 2
MESH = 8 8 8
PRIMITIVE_AXES = 1 0 0 0 1 0 0 0 1
BAND = 0.0 0.0 0.0 0.5 0.0 0.5 0.625 0.25 0.625, 0.375 0.375 0.75 00 0.0 0.0 0.
↪→5 0.5 0.5
BAND_POINTS = 101
BAND_CONNECTION = .TRUE.
FORCE_CONSTANTS = WRITE
FULL_FORCE_CONSTANTS = .TRUE.

After this step, the Phonopy software will generate band.yaml (for plotting the phonon spectrum) and the
FORCE_CONSTANTS file. The data contained in the FORCE_CONSTANTS file is the second-order force constants.
It is important to set FULL_FORCE_CONSTANTS = .TRUE., which outputs all the second-order force constants.
Otherwise, there may be errors when ShengBTE reads the data.
In addition, you can use the following command to output the gnuplot format of the phonon spectrum for plotting:

phonopy-bandplot --gnuplot > pho.dat

12.9. ShengBTE 78

ABACUS

1.3 Post-processing

Note that ShengBTE software requires the unit of the data in the FORCE_CONSTANTS_2ND file to be eV/Å^2, but the
unit of the FORCE_CONSTANTS calculated by ABACUS combined with Phonopy is eV/(Å*au), where au is the atomic
unit system and 1 au = 0.52918 Å. You can use the provided au2si.py script in the 2nd directory to convert the units
and generate the FORCE_CONSTANTS_2ND file. The command is as follows:

python au2si.py

The FORCE_CONSTANTS_2ND file is provided in the shengbte folder for reference to the calculation results.

2. Calculating the third-order force constants

To calculate the third-order force constants, you need to combine with the thirdorder program and output the third-order
force constant file FORCE_CONSTANTS_3RD. However, thirdorder currently only supports reading input and output
files from VASP and QE. Therefore, we are using thirdorder by converting ABACUS’s structure and output force files to
POSCAR and vasprun.xml, respectively. Please enter the 3rd folder first, and the specific steps will be described
below.

2.1 Obtaining perturbed configurations

First, convert the optimized STRU file from ABACUS software to POSCAR (the converted POSCAR file is already
provided in the directory, or you can do this conversion by yourself).
Then, run the thirdorder_vasp.py program to generate a series of atomic configuration files 3RD.POSCAR.*
after perturbation. For example, in this example, a total of 40 configurations were generated:

thirdorder_vasp.py sow 2 2 2 -2

Run pos2stru.py to convert the above POSCAR to STRU file. Note that this script calls functions from the ASE
software package (ASE needs to be installed in advance):

python pos2stru.py

Note: The dpdata software cannot be called here to perform the conversion. This is because the dpdata software forces
the lattice to change into a lower triangular matrix, which is equivalent to rotating the lattice and leads to a corresponding
rotation in the direction of the interatomic forces, which will cause errors.

2.2 Calculation of atomic forces for perturbation configurations

You can refer to the run_stru.sh script provided in the directory to batch generate SCF-* folders and submit cal-
culations. Here, ABACUS needs to perform SCF calculations on 40 atomic configurations, which may take some time.
It is recommended to run each SCF separately in the SCF-* folder. The scf_thr parameter in INPUT file should be
set to at least 1e-8 to obtain converged results.
After the calculations are complete, run aba2vasp.py to package the atomic forces calculated by ABACUS into the
vasprun.xml format and place them in each SCF-* folder with the following command:

python aba2vasp.py

The vasprun.xml format is illustrated as follows:

12.9. ShengBTE 79

ABACUS

<modeling>
<calculation>

<varray name="forces">
<v>1.865e-05 -0.04644196 -0.00153852</v>
<v>-1.77e-05 -0.00037715 -0.00149635</v>
<v>1.973e-05 0.002213 -0.00149461</v>
<v>-1.976e-05 0.00065303 -0.0014804</v>
<v>8.31e-06 -0.0003306 -0.00024288</v>
<v>-8.25e-06 -0.00038306 -0.00025385</v>
<v>1.071e-05 0.00060621 -0.00025797</v>
<v>-1.05e-05 -0.00014553 -0.00027532</v>
<v>0.00668053 0.00645634 -0.04642593</v>
<v>-0.00668085 0.00645595 -0.00040122</v>
<v>-0.00650454 0.00628877 -0.00025123</v>
<v>0.00650504 0.00628892 -0.00028948</v>
<v>-0.00039591 2.479e-05 0.00223371</v>
<v>0.00039608 2.426e-05 0.0006732</v>
<v>0.0003264 3.122e-05 0.00052874</v>
<v>-0.00032589 3.415e-05 -0.00023577</v>
<v>-2.908e-05 -0.00832477 0.00635709</v>
<v>3.737e-05 -0.00125057 -7.444e-05</v>
<v>-2.582e-05 0.00656076 0.00636285</v>
<v>2.566e-05 -0.00049974 -6.661e-05</v>
<v>-5.431e-05 0.00502637 0.00639077</v>
<v>4.553e-05 -0.00180978 0.0001325</v>
<v>-3.609e-05 -0.00676473 0.00638092</v>
<v>3.806e-05 5.503e-05 0.00012759</v>
<v>-0.00670704 0.00646596 0.01310437</v>
<v>0.00670119 3.673e-05 0.00602948</v>
<v>0.00036366 0.00627899 -0.00657272</v>
<v>-0.00036508 2.288e-05 0.00026009</v>
<v>0.00648649 0.0064463 -0.00036521</v>
<v>-0.00648098 1.594e-05 0.00671469</v>
<v>-0.00034493 0.00630074 0.00662932</v>
<v>0.00034331 4.157e-05 -0.0002028</v>

</varray>
</calculation>

</modeling>

Finally, execute the following command:

find SCF-* -name vasprun.xml|sort -n|thirdorder_vasp.py reap 2 2 2 -2

Then, the third-order force constant file FORCE_CONSTANTS_3RD can be obtained by running the above command.
The FORCE_CONSTANTS_3RD file is provided in the shengbte folder for reference in calculating the results.

3. Run ShengBTE to obtain lattice thermal conductivity

Enter the shengbte folder, in which the three files CONTROL (parameter file of ShengBTE),
FORCE_CONSTANTS_2ND (second-order force constant file), and FORCE_CONSTANTS_3RD (third-order force
constant file) have been prepared. Next, run ShengBTE with the following command to obtain the lattice thermal
conductivity, where the calculation results are given in the Ref folder for reference:

mpirun -n 10 ShengBTE

12.9. ShengBTE 80

ABACUS

12.9.4 Conclusion

For using plane wave (PW) in ABACUS to perform ShengBTE calculations, similar procedures should be followed.
However, the scf_thr parameter in the INPUT file for calculating the third-order force constant needs to be set to at
least 1e-12. The experimental lattice thermal conductivity of Si at 300 K is around 150 W/(m K), while the calculated
thermal conductivity of Si at 300 K is around 100 W/(m K) by using the provided example. This is because, as a demo,
a 2*2*2 expanded cell and a 2*2*2 K-point are used in the example, but the results are not converged yet with respect
to the given system size and k-points. In actual research, the size of the supercell and the sampling scheme of K-points
need to be tested to obtain converged results.

12.10 CANDELA

CANDELA is short for Collection of ANalysis DEsigned for Large-scale Atomic simulations. It is developed by MCre-
search to conduct analyses on MD trajectory in different formats. Right now the program only supports analysis of pair
distribution function (PDF), static structure factor (SSF) and mean square displacement (MSD). The minimum supported
version of ABACUS is 3.2.0.

12.10.1 Requirements for using CANDELA

For Detailed usage of CANDELA, please refer to the official document. There are two things which need special attention
in using CANDELA with ABACUS. First, the input file of CANDELA only takes the name of INPUT, the same as
ABACUS input file, so you should not run CANDELA in the same folder where you run ABACUS. Second, to use
CANDELA to postprocess ABACUS MD trajectory, the following parameters have to be specified in the INPUT file of
CANDELA in addition to other required parameters:

1. geo_in_type has to be set to ABACUS;
2. msd_dt has to be specified in unit of picosecond, especially in the case of calculation = msd;
3. geo_directory has to be set to the path to theMD_dump file in theOUT.xxx folder. As a result, a CANDELA

INPUT file for calculating PDF from ABACUS should be something like this:

calculation pdf # Pair Distribution Function.
system Al
geo_in_type LAMMPS
geo_directory ../geo/Al64.dump
geo_1 0
geo_2 20
geo_interval 1
geo_ignore 4

geo_out pdf.txt # output pdf name.

ntype 1 # number of different types of atoms.
natom 64 # total number of atoms.
natom1 64
rcut 6
dr 0.01 # delta r in real space

struf_dgx 0.05
struf_ng 200

More examples of CANDELA INPUT with ABACUS can be found in the test directory.

12.10. CANDELA 81

https://github.com/MCresearch/Candela
https://candela-docs.readthedocs.io/en/latest/
https://github.com/MCresearch/Candela/tree/main/test

ABACUS

12.11 TB2J

12.11.1 Introduction

TB2J is an open-source Python package for the automatic computation of magnetic interactions (including exchange
and Dzyaloshinskii-Moriya) between atoms of magnetic crystals from density functional Hamiltonians based on Wannier
functions or linear combinations of atomic orbitals. The program is based on Green’s function method with the local rigid
spin rotation treated as a perturbation. The ABACUS interface has been added since TB2J version 0.8.0.
For more information, see the documentation on https://tb2j.readthedocs.io/en/latest/

12.11.2 Installation

The most easy way to install TB2J is to use pip:

pip install TB2J

You can also download TB2J from the github page, and install with:

git clone https://github.com/mailhexu/TB2J.git
cd TB2J
python setup.py install

12.11.3 The Heisenberg model

The Heisenberg Hamiltonian in TB2J contains three different parts, which are:

E = −
∑

i ̸=j

[
J ij
isoS⃗i · S⃗j + S⃗iJ

ij
aniS⃗j + D⃗ij · (S⃗i × S⃗j)

]
,

where J ij
iso represents the isotropic exchange, J

ij
ani represents the symmetric anisotropic exhcange which is a 3 × 3 tensor

with J ani = J ani,T, D⃗ij represents the Dzyaloshinskii-Moriya interaction (DMI).
Note: Exchange parameters conventions for other Heisenberg Hamiltonian can be found in Conventions of
Heisenberg Model.

12.11.4 How to use

With the LCAO basis set, TB2J can directly take the output and compute the exchange parameters. For the PW and
LCAO-in-PW basis set, the Wannier90 interace can be used instead. In this tutorial we will use LCAO.

Collinear calculation without SOC

We take Fe as an example to illustrate how to use ABACUS to generate the input files required for TB2J.

12.11. TB2J 82

https://github.com/mailhexu/TB2J
https://tb2j.readthedocs.io/en/latest/
https://tb2j.readthedocs.io/en/latest/src/convention.html
https://tb2j.readthedocs.io/en/latest/src/convention.html

ABACUS

1. Perform ABACUS calculation.

INPUT file:

INPUT_PARAMETERS
#Parameters (1.General)
suffix Fe
stru_file STRU
kpoint_file KPT
pseudo_dir ./
orbital_dir ./
calculation scf
ntype 1
nspin 2
symmetry 1
noncolin 0
lspinorb 0

#Parameters (2.PW)
ecutwfc 100
scf_thr 1.0e-6
init_chg atomic
out_mul 1

#Parameters (4.Relaxation)
ks_solver genelpa
scf_nmax 200
out_bandgap 0

#Parameters (5.LCAO)
basis_type lcao
gamma_only 0

#Parameters (6.Smearing)
smearing_method gauss
smearing_sigma 0.001

#Parameters (7.Charge Mixing)
mixing_type broyden
mixing_beta 0.2

Variables related to output information
out_mat_hs2 1

STRU file:

ATOMIC_SPECIES
Fe 55.845 Fe_ONCV_PBE_FR-1.0.upf

NUMERICAL_ORBITAL
Fe_gga_8au_100Ry_4s2p2d1f.orb

LATTICE_CONSTANT
1.8897261258369282

LATTICE_VECTORS
2.8660000000 0.0000000000 0.0000000000

(continues on next page)

12.11. TB2J 83

ABACUS

(continued from previous page)
0.0000000000 2.8660000000 0.0000000000
0.0000000000 0.0000000000 2.8660000000

ATOMIC_POSITIONS
Direct

Fe
5.0000000000
2
0.0000000000 0.0000000000 0.0000000000 1 1 1 mag 2.5
0.5000000000 0.5000000000 0.5000000000 1 1 1 mag 2.5

and KPT file:

K_POINTS
0
Gamma
8 8 8 0 0 0

After the key parameter out_mat_hs2 is turned on, the Hamiltonian matrix H(R) (in Ry) and overlap matrix S(R)
will be written into files in the directory OUT.${suffix} . In the INPUT, the line:

suffix Fe

specifies the suffix of the output, in this calculation, we set the path to the directory of the DFT calculation, which is the
current directory (“.”) and the suffix to Fe.

2. Perform TB2J calculation:

abacus2J.py --path . --suffix Fe --elements Fe --kmesh 7 7 7

This first read the atomic structures from th STRU file, then read the Hamiltonian and the overlap matrices stored in
the files named starting from data-HR-* and data-SR-* files. It also read the fermi energy from the OUT.Fe/
running_scf.log file.
With the command above, we can calculate the J with a 7×7×7 k-point grid. This allows for the calculation of exchange
between spin pairs between 7 × 7 × 7 supercell. Note: the kmesh is not dense enough for a practical calculation. For a
very dense k-mesh, the --rcut option can be used to set the maximum distance of the magnetic interactions and thus
reduce the computation cost. But be sure that the cutoff is not too small.
The description of the output files in TB2J_results can be found in the TB2J documentation. We can find the
exchange parameters with Fe by :

grep "Fe" exchange.out

the following contents showing the first, second and third nearest neighbor exchange parameters as 18.6873, 9.9213 and
0.8963 meV, resoectively. More equivalent exchange parameters are also shown.

Fe1 Fe2 (-1, -1, -1) 18.6873 (-1.433, -1.433, -1.433) 2.482
Fe1 Fe2 (-1, -1, 0) 18.6867 (-1.433, -1.433, 1.433) 2.482
Fe1 Fe2 (-1, 0, -1) 18.6866 (-1.433, 1.433, -1.433) 2.482
Fe1 Fe2 (-1, 0, 0) 18.6873 (-1.433, 1.433, 1.433) 2.482
Fe1 Fe2 (0, -1, -1) 18.6873 (1.433, -1.433, -1.433) 2.482
Fe1 Fe2 (0, -1, 0) 18.6866 (1.433, -1.433, 1.433) 2.482

(continues on next page)

12.11. TB2J 84

https://tb2j.readthedocs.io/en/latest/src/output.html

ABACUS

(continued from previous page)
Fe1 Fe2 (0, 0, -1) 18.6867 (1.433, 1.433, -1.433) 2.482
Fe1 Fe2 (0, 0, 0) 18.6873 (1.433, 1.433, 1.433) 2.482
Fe2 Fe1 (0, 0, 0) 18.6873 (-1.433, -1.433, -1.433) 2.482
Fe2 Fe1 (0, 0, 1) 18.6867 (-1.433, -1.433, 1.433) 2.482
Fe2 Fe1 (0, 1, 0) 18.6866 (-1.433, 1.433, -1.433) 2.482
Fe2 Fe1 (0, 1, 1) 18.6873 (-1.433, 1.433, 1.433) 2.482
Fe2 Fe1 (1, 0, 0) 18.6873 (1.433, -1.433, -1.433) 2.482
Fe2 Fe1 (1, 0, 1) 18.6866 (1.433, -1.433, 1.433) 2.482
Fe2 Fe1 (1, 1, 0) 18.6867 (1.433, 1.433, -1.433) 2.482
Fe2 Fe1 (1, 1, 1) 18.6873 (1.433, 1.433, 1.433) 2.482
Fe1 Fe1 (-1, 0, 0) 9.9213 (-2.866, 0.000, 0.000) 2.866
Fe2 Fe2 (-1, 0, 0) 9.9213 (-2.866, 0.000, 0.000) 2.866
Fe1 Fe1 (0, -1, 0) 9.9211 (0.000, -2.866, 0.000) 2.866
Fe2 Fe2 (0, -1, 0) 9.9211 (0.000, -2.866, 0.000) 2.866
Fe1 Fe1 (0, 0, -1) 9.9210 (0.000, 0.000, -2.866) 2.866
Fe2 Fe2 (0, 0, -1) 9.9210 (0.000, 0.000, -2.866) 2.866
Fe1 Fe1 (0, 0, 1) 9.9210 (0.000, 0.000, 2.866) 2.866
Fe2 Fe2 (0, 0, 1) 9.9210 (0.000, 0.000, 2.866) 2.866
Fe1 Fe1 (0, 1, 0) 9.9211 (0.000, 2.866, 0.000) 2.866
Fe2 Fe2 (0, 1, 0) 9.9211 (0.000, 2.866, 0.000) 2.866
Fe1 Fe1 (1, 0, 0) 9.9213 (2.866, 0.000, 0.000) 2.866
Fe2 Fe2 (1, 0, 0) 9.9213 (2.866, 0.000, 0.000) 2.866
Fe1 Fe1 (-1, -1, 0) 0.8963 (-2.866, -2.866, 0.000) 4.053
Fe2 Fe2 (-1, -1, 0) 0.8963 (-2.866, -2.866, 0.000) 4.053
Fe1 Fe1 (-1, 0, -1) 0.8970 (-2.866, 0.000, -2.866) 4.053
Fe2 Fe2 (-1, 0, -1) 0.8970 (-2.866, 0.000, -2.866) 4.053

Several other formats of the exchange parameters are also provided in the TB2J_results directory , which can be
used in spin dynamics code, e.g. MULTIBINIT, Vampire.

Non-collinear calculation with SOC

The DMI and anisotropic exchange are result of the SOC, therefore requires the DFT calculation to be done with SOC
enabled. To get the full set of exchange parameters, a “rotate and merge” procedure is needed, in which several DFT
calculations with either the structure or the spin rotated are needed. For each of the non-collinear calcualtion, we compute
the exchange parameters from the DFT calculation with the same command as in the collienar case.

abacus2J.py --path . --suffix Fe --elements Fe --kmesh 7 7 7

And then the “TB2J_merge.py” command can be used to get the final spin interaction parameters.

Parameters of abacus2J.py

We can use the command

abacus2J.py --help

to view the parameters and the usage of them in abacus2J.py.

12.11. TB2J 85

https://docs.abinit.org/tutorial/spin_model/
https://vampire.york.ac.uk/
http://abacus2J.py

ABACUS

Acknowledgments

We thanks to Xu He to provide critical interface support.

12.11. TB2J 86

CHAPTER

THIRTEEN

DETAILED INTRODUCTION OF THE INPUT FILES

13.1 Full List of INPUT Keywords

• Full List of INPUT Keywords

– System variables

∗ suffix

∗ ntype

∗ calculation

∗ esolver_type

∗ symmetry

∗ symmetry_prec

∗ symmetry_autoclose

∗ kpar

∗ bndpar

∗ latname

∗ psi_initializer

∗ init_wfc

∗ init_chg

∗ init_vel

∗ nelec

∗ nelec_delta

∗ nupdown

∗ dft_functional

∗ xc_temperature

∗ pseudo_rcut

∗ pseudo_mesh

∗ mem_saver

∗ diago_proc

87

ABACUS

∗ nbspline

∗ kspacing

∗ min_dist_coef

∗ device

∗ precision

– Variables related to input files

∗ stru_file

∗ kpoint_file

∗ pseudo_dir

∗ orbital_dir

∗ read_file_dir

∗ wannier_card

– Plane wave related variables

∗ ecutwfc

∗ ecutrho

∗ nx, ny, nz

∗ ndx, ndy, ndz

∗ pw_seed

∗ pw_diag_thr

∗ pw_diag_nmax

∗ pw_diag_ndim

∗ erf_ecut

∗ fft_mode

∗ erf_height

∗ erf_sigma

– Numerical atomic orbitals related variables

∗ nb2d

∗ lmaxmax

∗ lcao_ecut

∗ lcao_dk

∗ lcao_dr

∗ lcao_rmax

∗ search_radius

∗ search_pbc

∗ bx, by, bz

– Electronic structure

13.1. Full List of INPUT Keywords 88

ABACUS

∗ basis_type

∗ ks_solver

∗ nbands

∗ nbands_istate

∗ nspin

∗ smearing_method

∗ smearing_sigma

∗ smearing_sigma_temp

∗ mixing_type

∗ mixing_beta

∗ mixing_beta_mag

∗ mixing_ndim

∗ mixing_restart

∗ mixing_dmr

∗ mixing_gg0

∗ mixing_gg0_mag

∗ mixing_gg0_min

∗ mixing_angle

∗ mixing_tau

∗ mixing_dftu

∗ gamma_only

∗ printe

∗ scf_nmax

∗ scf_thr

∗ scf_thr_type

∗ chg_extrap

∗ lspinorb

∗ noncolin

∗ soc_lambda

– Electronic structure (SDFT)

∗ method_sto

∗ nbands_sto

∗ nche_sto

∗ emin_sto

∗ emax_sto

∗ seed_sto

13.1. Full List of INPUT Keywords 89

ABACUS

∗ initsto_ecut

∗ initsto_freq

∗ npart_sto

– Geometry relaxation

∗ relax_method

∗ relax_new

∗ relax_scale_force

∗ relax_nmax

∗ relax_cg_thr

∗ cal_force

∗ force_thr

∗ force_thr_ev

∗ force_thr_ev2

∗ relax_bfgs_w1

∗ relax_bfgs_w2

∗ relax_bfgs_rmax

∗ relax_bfgs_rmin

∗ relax_bfgs_init

∗ cal_stress

∗ stress_thr

∗ press1, press2, press3

∗ fixed_axes

∗ fixed_ibrav

∗ fixed_atoms

∗ cell_factor

– Variables related to output information

∗ out_mul

∗ out_freq_elec

∗ out_chg

∗ out_pot

∗ out_dm

∗ out_dm1

∗ out_wfc_pw

∗ out_wfc_r

∗ out_wfc_lcao

∗ out_dos

13.1. Full List of INPUT Keywords 90

ABACUS

∗ out_band

∗ out_proj_band

∗ out_stru

∗ out_bandgap

∗ out_level

∗ out_alllog

∗ out_mat_hs

∗ out_mat_r

∗ out_mat_hs2

∗ out_mat_t

∗ out_mat_dh

∗ out_mat_xc

∗ out_app_flag

∗ out_ndigits

∗ out_interval

∗ band_print_num

∗ bands_to_print

∗ out_element_info

∗ restart_save

∗ restart_load

∗ rpa

– Density of states

∗ dos_edelta_ev

∗ dos_sigma

∗ dos_scale

∗ dos_emin_ev

∗ dos_emax_ev

∗ dos_nche

– NAOs

∗ bessel_nao_ecut

∗ bessel_nao_tolerence

∗ bessel_nao_rcut

∗ bessel_nao_smooth

∗ bessel_nao_sigma

– DeePKS

∗ deepks_out_labels

13.1. Full List of INPUT Keywords 91

ABACUS

∗ deepks_scf

∗ deepks_model

∗ bessel_descriptor_lmax

∗ bessel_descriptor_ecut

∗ bessel_descriptor_tolerence

∗ bessel_descriptor_rcut

∗ bessel_descriptor_smooth

∗ bessel_descriptor_sigma

∗ deepks_bandgap

∗ deepks_out_unittest

– OFDFT: orbital free density functional theory

∗ of_kinetic

∗ of_method

∗ of_conv

∗ of_tole

∗ of_tolp

∗ of_tf_weight

∗ of_vw_weight

∗ of_wt_alpha

∗ of_wt_beta

∗ of_wt_rho0

∗ of_hold_rho0

∗ of_lkt_a

∗ of_read_kernel

∗ of_kernel_file

∗ of_full_pw

∗ of_full_pw_dim

– Electric field and dipole correction

∗ efield_flag

∗ dip_cor_flag

∗ efield_dir

∗ efield_pos_max

∗ efield_pos_dec

∗ efield_amp

– Gate field (compensating charge)

∗ gate_flag

13.1. Full List of INPUT Keywords 92

ABACUS

∗ zgate

∗ block

∗ block_down

∗ block_up

∗ block_height

– Exact Exchange

∗ exx_hybrid_alpha

∗ exx_hse_omega

∗ exx_separate_loop

∗ exx_hybrid_step

∗ exx_mixing_beta

∗ exx_lambda

∗ exx_pca_threshold

∗ exx_c_threshold

∗ exx_v_threshold

∗ exx_dm_threshold

∗ exx_c_grad_threshold

∗ exx_v_grad_threshold

∗ exx_schwarz_threshold

∗ exx_cauchy_threshold

∗ exx_cauchy_force_threshold

∗ exx_cauchy_stress_threshold

∗ exx_ccp_threshold

∗ exx_ccp_rmesh_times

∗ exx_distribute_type

∗ exx_opt_orb_lmax

∗ exx_opt_orb_ecut

∗ exx_opt_orb_tolerence

∗ exx_real_number

– Molecular dynamics

∗ md_type

∗ md_nstep

∗ md_dt

∗ md_thermostat

∗ md_tfirst, md_tlast

∗ md_restart

13.1. Full List of INPUT Keywords 93

ABACUS

∗ md_restartfreq

∗ md_dumpfreq

∗ dump_force

∗ dump_vel

∗ dump_virial

∗ md_seed

∗ md_tfreq

∗ md_tchain

∗ md_pmode

∗ md_prec_level

∗ ref_cell_factor

∗ md_pcouple

∗ md_pfirst, md_plast

∗ md_pfreq

∗ md_pchain

∗ lj_rcut

∗ lj_epsilon

∗ lj_sigma

∗ pot_file

∗ msst_direction

∗ msst_vel

∗ msst_vis

∗ msst_tscale

∗ msst_qmass

∗ md_damp

∗ md_tolerance

∗ md_nraise

∗ cal_syns

∗ dmax

– DFT+U correction

∗ dft_plus_u

∗ orbital_corr

∗ hubbard_u

∗ yukawa_potential

∗ yukawa_lambda

∗ uramping

13.1. Full List of INPUT Keywords 94

ABACUS

∗ omc

∗ onsite_radius

– vdW correction

∗ vdw_method

∗ vdw_s6

∗ vdw_s8

∗ vdw_a1

∗ vdw_a2

∗ vdw_d

∗ vdw_abc

∗ vdw_C6_file

∗ vdw_C6_unit

∗ vdw_R0_file

∗ vdw_R0_unit

∗ vdw_cutoff_type

∗ vdw_cutoff_radius

∗ vdw_radius_unit

∗ vdw_cutoff_period

∗ vdw_cn_thr

∗ vdw_cn_thr_unit

– Berry phase and wannier90 interface

∗ berry_phase

∗ gdir

∗ towannier90

∗ nnkpfile

∗ wannier_method

∗ wannier_spin

∗ out_wannier_mmn

∗ out_wannier_amn

∗ out_wannier_eig

∗ out_wannier_unk

∗ out_wannier_wvfn_formatted

– TDDFT: time dependent density functional theory

∗ td_edm

∗ td_print_eij

∗ td_propagator

13.1. Full List of INPUT Keywords 95

ABACUS

∗ td_vext

∗ td_vext_dire

∗ td_stype

∗ td_ttype

∗ td_tstart

∗ td_tend

∗ td_lcut1

∗ td_lcut2

∗ td_gauss_freq

∗ td_gauss_phase

∗ td_gauss_sigma

∗ td_gauss_t0

∗ td_gauss_amp

∗ td_trape_freq

∗ td_trape_phase

∗ td_trape_t1

∗ td_trape_t2

∗ td_trape_t3

∗ td_trape_amp

∗ td_trigo_freq1

∗ td_trigo_freq2

∗ td_trigo_phase1

∗ td_trigo_phase2

∗ td_trigo_amp

∗ td_heavi_t0

∗ td_heavi_amp

∗ out_dipole

∗ out_efield

∗ ocp

∗ ocp_set

– Variables useful for debugging

∗ t_in_h

∗ vl_in_h

∗ vnl_in_h

∗ vh_in_h

∗ vion_in_h

13.1. Full List of INPUT Keywords 96

ABACUS

∗ test_force

∗ test_stress

∗ colour

∗ test_skip_ewald

– Electronic conductivities

∗ cal_cond

∗ cond_che_thr

∗ cond_dw

∗ cond_wcut

∗ cond_dt

∗ cond_dtbatch

∗ cond_smear

∗ cond_fwhm

∗ cond_nonlocal

– Implicit solvation model

∗ imp_sol

∗ eb_k

∗ tau

∗ sigma_k

∗ nc_k

– Deltaspin

∗ sc_mag_switch

∗ decay_grad_switch

∗ sc_thr

∗ nsc

∗ nsc_min

∗ sc_scf_nmin

∗ alpha_trial

∗ sccut

∗ sc_file

– Quasiatomic Orbital (QO) analysis

∗ qo_switch

∗ qo_basis

∗ qo_strategy

∗ qo_screening_coeff

∗ qo_thr

13.1. Full List of INPUT Keywords 97

ABACUS

back to top

13.1.1 System variables

These variables are used to control general system parameters.

suffix

• Type: String
• Description: In each run, ABACUS will generate a subdirectory in the working directory. This subdirectory
contains all the information of the run. The subdirectory name has the format: OUT.suffix, where the suffix is
the name you can pick up for your convenience.

• Default: ABACUS

ntype

• Type: Integer
• Description: Number of different atom species in this calculation. If this value is not equal to the atom species in
the STRU file, ABACUS will stop and quit. If not set or set to 0, ABACUS will automatically set it to the atom
species in the STRU file.

• Default: 0

calculation

• Type: String
• Description: Specify the type of calculation.

– scf: do self-consistent electronic structure calculation
– relax: do structure relaxation calculation, one can use relax_nmax to decide how many ionic relaxations
you want

– cell-relax: do variable-cell relaxation calculation
– nscf: do the non self-consistent electronic structure calculations. For this option, you need a charge density
file. For nscf calculations with planewave basis set, pw_diag_thr should be <= 1e-3

– get_pchg: For LCAO basis. Please see the explanation for variable nbands_istate
– get_wf: Envelope function for LCAO basis. Please see the explanation for variable nbands_istate
– md: molecular dynamics
– test_memory : checks memory required for the calculation. The number is not quite reliable, please use it
with care

– test_neighbour : only performs neighbouring atom search, please specify a positive search_radius manually.
– gen_bessel : generates projectors (a series of Bessel functions) for DeePKS; see also keywords
bessel_descriptor_lmax, bessel_descriptor_rcut and bessel_descriptor_tolerence. A file named jle.orb
will be generated which contains the projectors. An example is provided in examples/H2O-deepks-pw

13.1. Full List of INPUT Keywords 98

ABACUS

– get_S : only works for multi-k calculation with LCAO basis. Generates and writes the overlap matrix to a
file named SR.csr in the working directory. The format of the file will be the same as that generated by
out_mat_hs2

• Default: scf

esolver_type

• Type: String
• Description: choose the energy solver.

– ksdft: Kohn-Sham density functional theory
– ofdft: orbital-free density functional theory
– sdft: stochastic density functional theory

– tddft: real-time time-dependent density functional theory (TDDFT)
– lj: Leonard Jones potential
– dp: DeeP potential, see details in md.md

• Default: ksdft

symmetry

• Type: Integer
• Description: takes value 1, 0 or -1.

– -1: No symmetry will be considered.
– 0: Only time reversal symmetry would be considered in symmetry operations, which implied k point and -k
point would be treated as a single k point with twice the weight.

– 1: Symmetry analysis will be performed to determine the type of Bravais lattice and associated symmetry
operations. (point groups, space groups, primitive cells, and irreducible k-points)

• Default:
– 0:

∗ if calculation==md/nscf/get_pchg/get_wf/get_S or [gamma_only]==True;
∗ If (dft_fuctional==hse/hf/pbe0/scan0/opt_orb or rpa==True). Currently symmetry==1 is not supported
in EXX (exact exchange) calculation.

– 1: else

13.1. Full List of INPUT Keywords 99

ABACUS

symmetry_prec

• Type: Real
• Description: The accuracy for symmetry judgment. Usually the default value is good enough, but if the lattice
parameters or atom positions in STRU file is not accurate enough, this value should be enlarged.

Note: if calculation==cell_relax, this value can be dynamically changed corresponding to the variation
of accuracy of the lattice parameters and atom positions during the relaxation. The new value will be
printed in OUT.${suffix}/running_cell-relax.log in that case.

• Default: 1.0e-6
• Unit: Bohr

symmetry_autoclose

• Type: Boolean
• Availability: symmetry==1
• Description: Control how to deal with error in symmetry analysis due to inaccurate lattice parameters or atom
positions in STRU file, especially useful when calculation==cell-relax

– False: quit with an error message
– True: automatically set symmetry to 0 and continue running without symmetry analysis

• Default: True

kpar

• Type: Integer
• Description: divide all processors into kpar groups, and k points will be distributed among each group. The value
taken should be less than or equal to the number of k points as well as the number of MPI processes.

• Default: 1

bndpar

• Type: Integer
• Description: divide all processors into bndpar groups, and bands (only stochastic orbitals now) will be distributed
among each group. It should be larger than 0.

• Default: 1

13.1. Full List of INPUT Keywords 100

ABACUS

latname

• Type: String
• Description: Specifies the type of Bravias lattice. When set tonone, the three lattice vectors are supplied explicitly
in STRU file. When set to a certain Bravais lattice type, there is no need to provide lattice vector, but a few lattice
parameters might be required. For more information regarding this parameter, consult the page on STRU file.
Available options are (correspondence with ibrav in QE(Quantum Espresso) is given in parenthesis):

– none: free structure
– sc: simple cubic (1)
– fcc: face-centered cubic (2)
– bcc: body-centered cubic (3)
– hexagonal: hexagonal (4)
– trigonal: trigonal (5)
– st: simple tetragonal (6)
– bct: body-centered tetragonal (7)
– so: orthorhombic (8)
– baco: base-centered orthorhombic (9)
– fco: face-centered orthorhombic (10)
– bco: body-centered orthorhombic (11)
– sm: simple monoclinic (12)
– bacm: base-centered monoclinic (13)
– triclinic: triclinic (14)

• Default: none

psi_initializer

• Type: Integer
• Description: enable the experimental feature psi_initializer, to support use numerical atomic orbitals initialize
wavefunction (basis_type pw case).
NOTE: this feature is not well-implemented for nspin 4 case (closed presently), and cannot use with calcu-
lation nscf/esolver_type sdft cases. Available options are:

– 0: disable psi_initializer
– 1: enable psi_initializer

• Default: 0

13.1. Full List of INPUT Keywords 101

ABACUS

init_wfc

• Type: String
• Description: Only useful for plane wave basis only now. It is the name of the starting wave functions. In the future.
we should also make this variable available for localized orbitals set.
Available options are:

– atomic: from atomic pseudo wave functions. If they are not enough, other wave functions are initialized with
random numbers.

– atomic+random: add small random numbers on atomic pseudo-wavefunctions
– file: from binary files WAVEFUNC*.dat, which are output by setting out_wfc_pw to 2.
– random: random numbers

with psi_initializer 1, two more options are supported:
– nao: from numerical atomic orbitals. If they are not enough, other wave functions are initialized with random
numbers.

– nao+random: add small random numbers on numerical atomic orbitals
• Default: atomic

init_chg

• Type: String
• Description: This variable is used for both plane wave set and localized orbitals set. It indicates the type of starting
density.

– atomic: the density is starting from the summation of the atomic density of single atoms.
– file: the density will be read in from a binary file charge-density.dat first. If it does not exist, the
charge density will be read in from cube files. Besides, when you do nspin=1 calculation, you only need
the density file SPIN1_CHG.cube. However, if you do nspin=2 calculation, you also need the density file
SPIN2_CHG.cube. The density file should be output with these names if you set out_chg = 1 in INPUT file.

• Default: atomic

init_vel

• Type: Boolean
• Description:

– True: read the atom velocity (atomic unit : 1 a.u. = 21.877 Angstrom/fs) from the atom file (STRU) and
determine the initial temperature md_tfirst. If md_tfirst is unset or less than zero, init_vel is autoset to
be true.

– False: assign value to atom velocity using Gaussian distributed random numbers.
• Default: False

13.1. Full List of INPUT Keywords 102

ABACUS

nelec

• Type: Real
• Description:

– 0.0: the total number of electrons will be calculated by the sum of valence electrons (i.e. assuming neutral
system).

– >0.0: this denotes the total number of electrons in the system. Must be less than 2*nbands.
• Default: 0.0

nelec_delta

• Type: Real
• Description: the total number of electrons will be calculated by nelec+nelec_delta.
• Default: 0.0

nupdown

• Type: Real
• Description:

– 0.0: no constrain apply to system.
– >0.0: this denotes the difference number of electrons between spin-up and spin-down in the system. The
range of value must in [-nelec ~ nelec]. It is onemethod of constraint DFT, the fermi energy level will separate
to E_Fermi_up and E_Fermi_down.

• Default: 0.0

dft_functional

• Type: String
• Description: In our package, the XC functional can either be set explicitly using the dft_functional
keyword in INPUT file. If dft_functional is not specified, ABACUS will use the xc functional indi-
cated in the pseudopotential file. On the other hand, if dft_functional is specified, it will overwrite the func-
tional from pseudopotentials and performs calculation with whichever functional the user prefers. We fur-
ther offer two ways of supplying exchange-correlation functional. The first is using ‘short-hand’ names such
as ‘LDA’, ‘PBE’, ‘SCAN’. A complete list of ‘short-hand’ expressions can be found in the source code. The
other way is only available when compiling with LIBXC, and it allows for supplying exchange-correlation func-
tionals as combinations of LIBXC keywords for functional components, joined by a plus sign, for example,
‘dft_functional=‘LDA_X_1D_EXPONENTIAL+LDA_C_1D_CSC’. The list of LIBXC keywords can be found
on its website. In this way, we support all the LDA,GGA and mGGA functionals provided by LIBXC.
Furthermore, the old INPUT parameter exx_hybrid_type for hybrid functionals has been absorbed into
dft_functional. Options are hf (pure Hartree-Fock), pbe0(PBE0), hse (Note: in order to use HSE functional,
LIBXC is required). Note also that HSE has been tested while PBE0 has NOT been fully tested yet, and the max-
imum CPU cores for running exx in parallel is N(N + 1)/2, with N being the number of atoms. And forces for
hybrid functionals are not supported yet.
If set to opt_orb, the program will not perform hybrid functional calculation. Instead, it is going to generate
opt-ABFs as discussed in this article.

13.1. Full List of INPUT Keywords 103

https://www.tddft.org/programs/libxc/functionals/
https://pubs.acs.org/doi/abs/10.1021/acs.jpclett.0c00481

ABACUS

• Default: same as UPF file.

xc_temperature

• Type: Real
• Description: specifies temperature when using temperature-dependent XC functionals (KSDT and so on).
• Default : 0.0
• Unit: Ry

pseudo_rcut

• Type: Real
• Description: Cut-off of radial integration for pseudopotentials
• Default: 15
• Unit: Bohr

pseudo_mesh

• Type: Integer
• Description:

– 0: use our own mesh for radial integration of pseudopotentials
– 1: use the mesh that is consistent with quantum espresso

• Default: 0

mem_saver

• Type: Boolean
• Description: Used only for nscf calculations.

– 0: no memory saving techniques are used.
– 1: a memory saving technique will be used for many k point calculations.

• Default: 0

diago_proc

• Type: Integer
• Availability: pw base
• Description:

– 0: it will be set to the number of MPI processes. Normally, it is fine just leave it to the default value.
– >0: it specifies the number of processes used for carrying out diagonalization. Must be less than or equal to
total number of MPI processes. Also, when cg diagonalization is used, diago_proc must be the same as the
total number of MPI processes.

13.1. Full List of INPUT Keywords 104

ABACUS

• Default: 0

nbspline

• Type: Integer
• Description: If set to a natural number, a Cardinal B-spline interpolation will be used to calculate Structure Factor.
nbspline represents the order of B-spline basis and a larger one can get more accurate results but cost more. It
is turned off by default.

• Default: -1

kspacing

• Type: Real
• Description: Set the smallest allowed spacing between k points, unit in 1/bohr. It should be larger than 0.0, and
suggest smaller than 0.25. When you have set this value > 0.0, then the KPT file is unnecessary, and the number
of K points nk_i = max(1, int(|b_i|/KSPACING_i)+1), where b_i is the reciprocal lattice vector. The default value
0.0 means that ABACUS will read the applied KPT file. If only one value is set (such as kspacing 0.5), then
kspacing values of a/b/c direction are all set to it; and one can also set 3 values to set the kspacing value for a/b/c
direction separately (such as: kspacing 0.5 0.6 0.7).
Note: if gamma_only is set to be true, kspacing is invalid.

• Default: 0.0

min_dist_coef

• Type: Real
• Description: a factor related to the allowed minimum distance between two atoms. At the beginning, ABACUS
will check the structure, and if the distance of two atoms is shorter than min_dist_coef*(standard covalent bond
length), we think this structure is unreasonable. If you want to calculate some structures in extreme conditions like
high pressure, you should set this parameter as a smaller value or even 0.

• Default: 0.2

device

• Type: String
• Description: Specifies the computing device for ABACUS.
Available options are:

– cpu: for CPUs via Intel, AMD, or Other supported CPU devices
– gpu: for GPUs via CUDA or ROCm.

Known limitations:
– pw basis: required by the gpu acceleration options
– cg/bpcg/dav ks_solver: required by the gpu acceleration options

• Default: cpu

13.1. Full List of INPUT Keywords 105

ABACUS

precision

• Type: String
• Description: Specifies the precision of the PW_SCF calculation.
Available options are:

– single: single precision
– double: double precision

Known limitations:
– pw basis: required by the single precision options
– cg/bpcg/dav ks_solver: required by the single precision options

• Default: double
back to top

13.1.2 Variables related to input files

These variables are used to control parameters related to input files.

stru_file

• Type: String
• Description: the name of the structure file

– Containing various information about atom species, including pseudopotential files, local orbitals files, cell
information, atom positions, and whether atoms should be allowed to move.

– Refer to Doc
• Default: STRU

kpoint_file

• Type: String
• Description: the name of the k-points file

– In atomic orbitals basis with gamma_only set to true, the KPT file is unnecessary, because a KPT file will
be generated automatically.

– When more than one k-points are required, an explicit KPT file is mandatory.
– Refer to Doc

• Default: KPT

13.1. Full List of INPUT Keywords 106

https://github.com/deepmodeling/abacus-develop/blob/develop/docs/advanced/input_files/stru.md
https://github.com/deepmodeling/abacus-develop/blob/develop/docs/advanced/input_files/kpt.md

ABACUS

pseudo_dir

• Type: String
• Description: the pseudopotential file directory

– This parameter is combined with the pseudopotential filenames in the STRU file to form the complete pseu-
dopotential file paths.

– Example: set pseudo_dir to “…/” with “Si.upf” which specified under “ATOMIC_SPECIES” in STRU file,
ABACUS will open the pseudopotential file in path “…/Si.upf”.

• Default: “”

orbital_dir

• Type: String
• Description: the orbital file directory

– This parameter is combined with orbital filenames in the STRU file to form the complete orbital file paths.
– Example: set orbital_dir to “…/” with “Si.orb” which specified under “NUMERICAL_ORBITAL” in STRU
file, ABACUS will open the orbital file in path “…/Si.orb”.

• Default: “”

read_file_dir

• Type: String
• Description: Indicates the location of files, such as electron density (SPIN1_CHG.cube), required as a starting
point.

– Example: ‘./’ implies the files to be read are located in the working directory.
• Default: OUT.$suffix

wannier_card

• Type: String
• Availability: Using ABACUS with Wannier90.
• Description: The name of the input file related to Wannier90.
• Default: “none”

back to top

13.1. Full List of INPUT Keywords 107

ABACUS

13.1.3 Plane wave related variables

These variables are used to control the plane wave related parameters.

ecutwfc

• Type: Real
• Description: Energy cutoff for plane wave functions, the unit is Rydberg. Note that even for localized orbitals
basis, you still need to setup an energy cutoff for this system. Because our local pseudopotential parts and the
related force are calculated from plane wave basis set, etc. Also, because our orbitals are generated by matching
localized orbitals to a chosen set of wave functions from a certain energy cutoff, this set of localize orbitals is most
accurate under this same plane wave energy cutoff.

• Default: 50

ecutrho

• Type: Real
• Description: Energy cutoff for charge density and potential, the unit is Rydberg. For norm-conserving pseudopo-
tential you should stick to the default value, you can reduce it by a little but it will introduce noise especially on
forces and stress. For ultrasoft pseudopotential a larger value than the default is often desirable (ecutrho = 8 to
12 times ecutwfc, typically). The use of gradient-corrected functional, especially in cells with vacuum, or for
pseudopotential without non-linear core correction, usually requires an higher values of ecutrho to be accurately
converged.

• Default: 4*ecutwfc

nx, ny, nz

• Type: Integer
• Description: If set to a positive number, then the three variables specify the numbers of FFT grid points in x, y, z
directions, respectively. If set to 0, the number will be calculated from ecutrho.
Note: You must specify all three dimensions for this setting to be used.

• Default: 0

ndx, ndy, ndz

• Type: Integer
• Description: If set to a positive number, then the three variables specify the numbers of FFT grid (for the dense
part of charge density in ultrasoft pseudopotential) points in x, y, z directions, respectively. If set to 0, the number
will be calculated from ecutwfc.
Note: You must specify all three dimensions for this setting to be used.
Note: These parameters must be used combined with nx,ny,nz. If nx,ny,nz are unset, ndx,ndy,ndz are used as
nx,ny,nz.

• Default: 0

13.1. Full List of INPUT Keywords 108

ABACUS

pw_seed

• Type: Integer
• Description: Only useful for plane wave basis only now. It is the random seed to initialize wave functions. Only
positive integers are available.

• Default:0

pw_diag_thr

• Type: Real
• Description: Only used when you use diago_type = cg or diago_type = david. It indicates the
threshold for the first electronic iteration, from the second iteration the pw_diag_thr will be updated automatically.
For nscf calculations with planewave basis set, pw_diag_thr should be <= 1e-3.

• Default: 0.01

pw_diag_nmax

• Type: Integer
• Description: Only useful when you use ks_solver = cg or ks_solver = dav. It indicates the maximal
iteration number for cg/david method.

• Default: 40

pw_diag_ndim

• Type: Integer
• Description: Only useful when you use ks_solver = dav. It indicates the maximal dimension for the
Davidson method.

• Default: 4

erf_ecut

• Type: Real
• Description: Used in variable-cell molecular dynamics (or in stress calculation). See erf_sigma in detail.
• Default: 0.0
• Unit: Ry

13.1. Full List of INPUT Keywords 109

ABACUS

fft_mode

• Type: Integer
• Description: Set the mode of FFTW.

– 0: FFTW_ESTIMATE
– 1: FFTW_MEASURE
– 2: FFTW_PATIENT
– 3: FFTW_EXHAUSTIVE

• Default: 0

erf_height

• Type: Real
• Description: Used in variable-cell molecular dynamics (or in stress calculation). See erf_sigma in detail.
• Default: 0.0
• Unit: Ry

erf_sigma

• Type: Real
• Description: In order to recover the accuracy of a constant energy cutoff calculation, the kinetic functional is
modified, which is used in variable-cell molecular dynamics (or in stress calculation).
erf_ecut is the value of the constant energy cutoff; erf_height and erf_sigma are the height and the width of the
energy step for reciprocal vectors whose square modulus is greater than erf_ecut. In the kinetic energy, G^2 is
replaced by G^2 + erf_height * (1 + erf ((G^2 - erf_ecut)/erf_sigma))
See: M. Bernasconi et al., J. Phys. Chem. Solids 56, 501 (1995), doi:10.1016/0022-3697(94)00228-2

• Default: 0.1
• Unit: Ry

back to top

13.1.4 Numerical atomic orbitals related variables

These variables are used to control the numerical atomic orbitals related parameters.

13.1. Full List of INPUT Keywords 110

ABACUS

nb2d

• Type: Integer
• Description: In LCAO calculations, we arrange the total number of processors in an 2D array, so that we can
partition the wavefunction matrix (number of bands*total size of atomic orbital basis) and distribute them in this
2D array. When the system is large, we group processors into sizes of nb2d, so that multiple processors take care
of one row block (a group of atomic orbitals) in the wavefunction matrix. If set to 0, nb2d will be automatically
set in the program according to the size of atomic orbital basis:

– if size <= 500 : nb2d = 1
– if 500 < size <= 1000 : nb2d = 32
– if size > 1000 : nb2d = 64;

• Default: 0

lmaxmax

• Type: Integer
• Description: If not equals to 2, then the maximum l channels on LCAO is set to lmaxmax. If 2, then the number
of l channels will be read from the LCAO data sets. Normally no input should be supplied for this variable so that
it is kept as its default.

• Default: 2.

lcao_ecut

• Type: Real
• Description: Energy cutoff (in Ry) for two-center integrals in LCAO. The two-center integration table are obtained
via a k space integral whose upper limit is about sqrt(lcao_ecut).

• Default: ecutwfc

lcao_dk

• Type: Real
• Description: k spacing (in Bohr−1) for two-center integrals. The two-center integration table are obtained via a k
space integral on a uniform grid with spacing lcao_dk.

• Default: 0.01

lcao_dr

• Type: Real
• Description: r spacing (in Bohr) of the integration table of two-center integrals.
• Default: 0.01

13.1. Full List of INPUT Keywords 111

ABACUS

lcao_rmax

• Type: Real
• Description: Maximum distance (in Bohr) for the two-center integration table.
• Default: 30

search_radius

• Type: Real
• Description: Searching radius in finding the neighbouring atoms. By default the radius will be automatically
determined by the cutoffs of orbitals and nonlocal beta projectors.

• Default: -1
• Unit: Bohr

search_pbc

• Type: Boolean
• Description: If True, periodic images will be included in searching for the neighbouring atoms. If False, periodic
images will be ignored.

• Default: True

bx, by, bz

• Type: Integer
• Description: In the matrix operation of grid integral, bx/by/bz grids (in x, y, z directions) are treated as a whole
as a matrix element. A different value will affect the calculation speed. The default is 0, which means abacus will
automatically calculate these values.

• Default: 0
back to top

13.1.5 Electronic structure

These variables are used to control the electronic structure and geometry relaxation calculations.

basis_type

• Type: String
• Description: Choose the basis set.

– pw: Using plane-wave basis set only.
– lcao: Using localized atomic orbital sets.
– lcao_in_pw: Expand the localized atomic set in plane-wave basis, non-self-consistent field calculation not
tested.

13.1. Full List of INPUT Keywords 112

ABACUS

• Default: pw

ks_solver

• Type: String
• Description: Choose the diagonalization methods for the Hamiltonian matrix expanded in a certain basis set.
For plane-wave basis,

– cg: cg method.
– bpcg: bpcg method, which is a block-parallel Conjugate Gradient (CG) method, typically exhibits higher
acceleration in a GPU environment.

– dav: the Davidson algorithm.
For atomic orbitals basis,

– genelpa: This method should be used if you choose localized orbitals.
– scalapack_gvx: Scalapack can also be used for localized orbitals.
– cusolver: (Unavailable currently, it will be fixed in future versions) This method needs building with the
cusolver component for lcao and at least one gpu is available.

If you set ks_solver=genelpa for basis_type=pw, the program will be stopped with an error message:

genelpa can not be used with plane wave basis.

Then the user has to correct the input file and restart the calculation.
• Default: cg (plane-wave basis), or genelpa (localized atomic orbital basis, if compiling option USE_ELPA has
been set), scalapack_gvx, (localized atomic orbital basis, if compiling option USE_ELPA has not been set)

nbands

• Type: Integer
• Description: The number of Kohn-Sham orbitals to calculate. It is recommended to setup this value, especially
when smearing techniques are utilized, more bands should be included.

• Default:
– nspin=1: max(1.2*occupied_bands, occupied_bands + 10)
– nspin=2: max(1.2*nelec_spin, nelec_spin + 10), in which nelec_spin = max(nelec_spin_up,
nelec_spin_down)

– nspin=4: max(1.2*nelec, nelec + 20)

13.1. Full List of INPUT Keywords 113

ABACUS

nbands_istate

• Type: Integer
• Availability: Only used when calculation = get_wf or calculation = get_pchg.
• Description: The number of bands around the Fermi level you would like to calculate. get_wfmeans to calculate
the envelope functions of wave functions Ψi = ΣµCiµΦµ, where Ψi is the ith wave function with the band index
i and Φµ is the localized atomic orbital set. get_pchg means to calculate the density of each wave function
|Ψi|2. Specifically, suppose we have highest occupied bands at 100th wave functions. And if you set this variable
to 5, it will print five wave functions from 96th to 105th. But before all this can be carried out, the wave functions
coefficients should be first calculated and written into a file by setting the flag out_wfc_lcao = 1.

• Default: 5

nspin

• Type: Integer
• Description: The number of spin components of wave functions.

– 1: Spin degeneracy
– 2: Collinear spin polarized.
– 4: For the case of noncollinear polarized, nspin will be automatically set to 4 without being specified by the
user.

• Default: 1

smearing_method

• Type: String
• Description: It indicates which occupation and smearing method is used in the calculation.

– fixed: fixed occupations (available for non-coductors only)
– gauss or gaussian: Gaussian smearing method.
– mp: methfessel-paxton smearing method; recommended for metals.
– mp2: 2-nd methfessel-paxton smearing method; recommended for metals.
– mv or cold: marzari-vanderbilt smearing method.
– fd: Fermi-Dirac smearing method: f = 1/{1 + exp[(E − µ)/kT]} and smearing_sigma below is the
temperature T (in Ry).

• Default: gauss

13.1. Full List of INPUT Keywords 114

ABACUS

smearing_sigma

• Type: Real
• Description: Energy range for smearing.
• Default: 0.015
• Unit: Ry

smearing_sigma_temp

• Type: Real
• Description: Energy range for smearing, smearing_sigma = 1/2 * kB * smearing_sigma_temp.
• Default: 2 * smearing_sigma / kB.
• Unit: K

mixing_type

• Type: String
• Description: Charge mixing methods.

– plain: Just simple mixing.
– pulay: Standard Pulay method. P. Pulay Chemical Physics Letters, (1980)
– broyden: Simplified modified Broyden method. D.D. Johnson Physical Review B (1988)

In general, the convergence of the Broyden method is slightly faster than that of the Pulay method.
• Default: broyden

mixing_beta

• Type: Real
• Description: In general, the formula of charge mixing can be written as ρnew = ρold + β ∗ ρupdate, where ρnew
represents the new charge density after charge mixing, ρold represents the charge density in previous step, ρupdate
is obtained through various mixing methods, and β is set by the parameter mixing_beta. A lower value of
‘mixing_beta’ results in less influence of ρupdate on ρnew, making the self-consistent field (SCF) calculation more
stable. However, it may require more steps to achieve convergence. We recommend the following options:

– 0.8: nspin=1
– 0.4: nspin=2 and nspin=4
– 0: keep charge density unchanged, usually used for restarting with init_chg=file or testing.
– 0.1 or less: if convergence of SCF calculation is difficult to reach, please try 0 < mixing_beta < 0.1.

Note: For low-dimensional large systems, the setup of mixing_beta=0.1, mixing_ndim=20, and
mixing_gg0=1.0 usually works well.

• Default: 0.8 for nspin=1, 0.4 for nspin=2 and nspin=4.

13.1. Full List of INPUT Keywords 115

https://www.sciencedirect.com/science/article/abs/pii/0009261480803964
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.38.12807

ABACUS

mixing_beta_mag

• Type: Real
• Description: Mixing parameter of magnetic density.
• Default: 4*mixing_beta, but the maximum value is 1.6.

Note that mixing_beta_mag is not euqal to mixing_beta means that ρup and ρdown mix independently from
each other. This setting will fail for one case where the ρup and ρdown of the ground state refers to different Kohn-
Sham orbitals. For an atomic system, the ρup and ρdown of the ground state refers to different Kohn-Sham orbitals.
We all know Kohn-Sham orbitals are orthogonal to each other. So the mixture of ρup and ρdown should be exactly
independent, otherwise SCF cannot find the ground state forever. To sum up, please make sure mixing_beta_mag
and mixing_gg0_mag exactly euqal to mixing_beta and mixing_gg0 if you calculate an atomic system.

mixing_ndim

• Type: Integer
• Description: It indicates the mixing dimensions in Pulay or Broyden. Pulay and Broyden method use the density
from previous mixing_ndim steps and do a charge mixing based on this density.
For systems that are difficult to converge, one could try increasing the value of ‘mixing_ndim’ to enhance the stability
of the self-consistent field (SCF) calculation.

• Default: 8

mixing_restart

• Type: double
• Description: If the density difference between input and output drho is smaller than mixing_restart, SCF
will restart at next step which means SCF will restart by using output charge density from perivos iteration as input
charge density directly, and start a new mixing. Notice that mixing_restart will only take effect once in one
SCF.

• Default: 0

mixing_dmr

• Type: bool
• Availability: Only for mixing_restart>=0.0
• Description: At n-th iteration which is calculated by drho<mixing_restart, SCF will start a mixing for
real-space density matrix by using the same coefficiences as the mixing of charge density.

• Default: false

13.1. Full List of INPUT Keywords 116

ABACUS

mixing_gg0

• Type: Real
• Description: Whether to perfom Kerker scaling for charge density.

– >0: The high frequency wave vectors will be suppressed by multiplying a scaling factor k2

k2+gg02 . Setting
mixing_gg0 = 1.0 is normally a good starting point. Kerker preconditioner will be automatically
turned off if mixing_beta <= 0.1.

– 0: No Kerker scaling is performed.
For systems that are difficult to converge, particularly metallic systems, enabling Kerker scaling may aid in achieving
convergence.

• Default: 1.0

mixing_gg0_mag

• Type: Real
• Description: Whether to perfom Kerker preconditioner of magnetic density. Note: we do not recommand to open
Kerker preconditioner of magnetic density unless the system is too hard to converge.

• Default: 0.0

mixing_gg0_min

• Type: Real
• Description: the minimum kerker coefficient
• Default: 0.1

mixing_angle

• Type: Real
• Availability: Only relevant for non-colinear calculations nspin=4.
• Description: Normal broyden mixing can give the converged result for a given magnetic configuration. If one
is not interested in the energies of a given magnetic configuration but wants to determine the ground state by
relaxing the magnetic moments’ directions, one cannot rely on the standard Broyden mixing algorithm. To enhance
the ability to find correct magnetic configuration for non-colinear calculations, ABACUS implements a promising
mixing method proposed by J. Phys. Soc. Jpn. 82 (2013) 114706. Here, mixing_angle is the angle mixing
parameter. In fact, only mixing_angle=1.0 is implemented currently.

– <=0: Normal broyden mixing formx,my,mz

– >0: Angle mixing for the modulus |m| with mixing_angle=1.0
• Default: -10.0

Note: In new angle mixing, you should set mixing_beta_mag >> mixing_beta. The setup of
mixing_beta=0.2, mixing_beta_mag=1.0 usually works well.

13.1. Full List of INPUT Keywords 117

ABACUS

mixing_tau

• Type: Boolean
• Availability: Only relevant for meta-GGA calculations.
• Description: Whether to mix the kinetic energy density.

– True: The kinetic energy density will also be mixed. It seems for general cases, SCF converges fine even
without this mixing. However, if there is difficulty in converging SCF for meta-GGA, it might be helpful to
turn this on.

– False: The kinetic energy density will not be mixed.
• Default: False

mixing_dftu

• Type: Boolean
• Availability: Only relevant for DFT+U calculations.
• Description: Whether to mix the occupation matrices.

– True: The occupation matrices will also be mixed by plain mixing. From experience this is not very helpful
if the +U calculation does not converge.

– False: The occupation matrices will not be mixed.
• Default: False

gamma_only

• Type: Integer
• Availability: Only used in localized orbitals set
• Description: Whether to use gamma_only algorithm.

– 0: more than one k-point is used and the ABACUS is slower compared to the gamma only algorithm.
– 1: ABACUS uses gamma only, the algorithm is faster and you don’t need to specify the k-points file.

Note: If gamma_only is set to 1, the KPT file will be overwritten. So make sure to turn off gamma_only for multi-k
calculations.

• Default: 0

printe

• Type: Integer
• Description: Print out energy for each band for every printe step
• Default: 100

13.1. Full List of INPUT Keywords 118

ABACUS

scf_nmax

• Type: Integer
• Description: This variable indicates the maximal iteration number for electronic iterations.
• Default: 100

scf_thr

• Type: Real
• Description: It’s the threshold for electronic iteration. It represents the charge density error between two sequential
densities from electronic iterations. Usually for local orbitals, usually 1e-6 may be accurate enough.

• Default: 1.0e-9 (plane-wave basis), or 1.0e-7 (localized atomic orbital basis).

scf_thr_type

• Type: Integer
• Description: Choose the calculation method of convergence criterion.

– 1: the criterion is defined as ∆ρG = 1
2

∫∫ ∆ρ(r)∆ρ(r′)
|r−r′| d3rd3r′.

– 2: the criterion is defined as ∆ρR =
∫
|∆ρ(r)|d3r.

Note: This parameter is still under testing and the default setting is usually sufficient.
• Default: 1 (plane-wave basis), or 2 (localized atomic orbital basis).

chg_extrap

• Type: String
• Description: Methods to do extrapolation of density when ABACUS is doing geometry relaxations or molecular
dynamics.

– atomic: atomic extrapolation.
– first-order: first-order extrapolation.
– second-order: second-order extrapolation.

• Default: first-order (geometry relaxations), second-order (molecular dynamics), else atomic

lspinorb

• Type: Boolean
• Description: Whether to consider spin-orbital coupling effect in the calculation.

– True: Consider spin-orbital coupling effect, and nspin is also automatically set to 4.
– False: Do not consider spin-orbital coupling effect.

• Default: False

13.1. Full List of INPUT Keywords 119

ABACUS

noncolin

• Type: Boolean
• Description: Whether to allow non-collinear polarization, in which case the coupling between spin up and spin
down will be taken into account.

– True: Allow non-collinear polarization, and nspin is also automatically set to 4.
– False: Do not allow non-collinear polarization.

• Default: False

soc_lambda

• Type: Real
• Availability: Relevant for soc calculations.
• Description: Sometimes, for some real materials, both scalar-relativistic and full-relativistic can not describe the
exact spin-orbit coupling. Artificial modulation may help in such cases.
soc_lambda, which has value range [0.0, 1.0] , is used for modulate SOC effect.
In particular, soc_lambda 0.0 refers to scalar-relativistic case and soc_lambda 1.0 refers to full-
relativistic case.

• Default: 1.0
back to top

13.1.6 Electronic structure (SDFT)

These variables are used to control the parameters of stochastic DFT (SDFT), mix stochastic-deterministic DFT (MDFT),
or complete-basis Chebyshev method (CT). In the following text, stochastic DFT is used to refer to these three methods.
We suggest using SDFT to calculate high-temperature systems and we only support smearing_method “fd”. Both “scf”
and “nscf” calculation are supported.

method_sto

• Type: Integer
• Availability: esolver_type = sdft
• Description: Different methods to do stochastic DFT

– 1: Calculate Tn(ĥ)χ twice, where Tn(x) is the n-th order Chebyshev polynomial and ĥ = Ĥ−Ē
∆E owning

eigenvalues ∈ (−1, 1). This method cost less memory but is slower.

– 2: Calculate Tn(ĥ)χ once but needs much more memory. This method is much faster. Besides, it calculates
Ne with χ

√
f̂

√
f̂χ, which needs a smaller nche_sto. However, when the memory is not enough, only method

1 can be used.
– other: use 2

• Default: 2

13.1. Full List of INPUT Keywords 120

ABACUS

nbands_sto

• Type: Integer or string
• Availability: esolver_type = sdft
• Description: The number of stochastic orbitals

– > 0: Perform stochastic DFT. Increasing the number of bands improves accuracy and reduces stochastic
errors, which scale as 1/

√
Nχ; To perform mixed stochastic-deterministic DFT, you should set nbands,

which represents the number of KS orbitals.
– 0: Perform Kohn-Sham DFT.
– all: All complete basis sets are used to replace stochastic orbitals with the Chebyshev method (CT), resulting
in the same results as KSDFT without stochastic errors.

• Default: 256

nche_sto

• Type: Integer
• Availability: esolver_type = sdft
• Description: Chebyshev expansion orders for stochastic DFT.
• Default: 100

emin_sto

• Type: Real
• Availability: esolver_type = sdft
• Description: Trial energy to guess the lower bound of eigen energies of the Hamiltonian Operator Ĥ .
• Default: 0.0
• Unit: Ry

emax_sto

• Type: Real
• Availability: esolver_type = sdft
• Description: Trial energy to guess the upper bound of eigen energies of the Hamiltonian Operator Ĥ .
• Default: 0.0
• Unit: Ry

13.1. Full List of INPUT Keywords 121

ABACUS

seed_sto

• Type: Integer
• Availability: esolver_type = sdft
• Description: The random seed to generate stochastic orbitals.

– >= 0: Stochastic orbitals have the form of exp(i2πθ(G)), where θ is a uniform distribution in (0, 1).
– 0: the seed is decided by time(NULL).
– <= -1: Stochastic orbitals have the form of ±1 with equal probability.
– -1: the seed is decided by time(NULL).

• Default: 0

initsto_ecut

• Type: Real
• Availability: esolver_type = sdft
• Description: Stochastic wave functions are initialized in a large box generated by “4*initsto_ecut”. init-
sto_ecut should be larger than ecutwfc. In this method, SDFT results are the same when using different cores.
Besides, coefficients of the same G are the same when ecutwfc is rising to initsto_ecut. If it is smaller than ecutwfc,
it will be turned off.

• Default: 0.0
• Unit: Ry

initsto_freq

• Type: Integer
• Availability: esolver_type = sdft
• Description: Frequency (once each initsto_freq steps) to generate new stochastic orbitals when running md.

– positive integer: Update stochastic orbitals
– 0: Never change stochastic orbitals.

• Default: 0

npart_sto

• Type: Integer
• Availability: method_sto = 2 and out_dos = True or cal_cond = True
• Description: Make memory cost to 1/npart_sto times of the previous one when running the post process of SDFT
like DOS or conductivities.

• Default: 1
back to top

13.1. Full List of INPUT Keywords 122

ABACUS

13.1.7 Geometry relaxation

These variables are used to control the geometry relaxation.

relax_method

• Type: String
• Description: The methods to do geometry optimization.

– cg: using the conjugate gradient (CG) algorithm. Note that there are two implementations of the conjugate
gradient (CG) method, see relax_new.

– bfgs: using the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm.
– cg_bfgs: using the CGmethod for the initial steps, and switching to BFGSmethod when the force convergence
is smaller than relax_cg_thr.

– sd: using the steepest descent (SD) algorithm.
– fire: the Fast Inertial Relaxation Engine method (FIRE), a kind of molecular-dynamics-based relaxation
algorithm, is implemented in the molecular dynamics (MD) module. The algorithm can be used by setting
calculation to md and md_type to fire. Also ionic velocities should be set in this case. See fire for more
details.

• Default: cg

relax_new

• Type: Boolean
• Description: At around the end of 2022 we made a new implementation of the Conjugate Gradient (CG) method
for relax and cell-relax calculations. But the old implementation was also kept.

– True: use the new implementation of CG method for relax and cell-relax calculations.
– False: use the old implementation of CG method for relax and cell-relax calculations.

• Default: True

relax_scale_force

• Type: Real
• Availability: only used when relax_new set to True
• Description: The paramether controls the size of the first conjugate gradient step. A smaller value means the first
step along a new CG direction is smaller. This might be helpful for large systems, where it is safer to take a smaller
initial step to prevent the collapse of the whole configuration.

• Default: 0.5

13.1. Full List of INPUT Keywords 123

ABACUS

relax_nmax

• Type: Integer
• Description: The maximal number of ionic iteration steps, the minimum value is 1.
• Default: 1

relax_cg_thr

• Type: Real
• Description: When move-method is set to cg_bfgs, a mixed algorithm of conjugate gradient (CG) method and
Broyden–Fletcher–Goldfarb–Shanno (BFGS) method is used. The ions first move according to CG method, then
switched to BFGS method when the maximum of force on atoms is reduced below the CG force threshold, which
is set by this parameter.

• Default: 0.5
• Unit: eV/Angstrom

cal_force

• Type: Boolean
• Description:

– True calculate the force at the end of the electronic iteration
– False no force calculation at the end of the electronic iteration

• Default: False if calculation is set to scf, True if calculation is set to cell-relax, relax, or md.

force_thr

• Type: Real
• Description: Threshold of the force convergence in Ry/Bohr. The threshold is compared with the largest force
among all of the atoms. The recommended value for using atomic orbitals is 0.04 eV/Angstrom (0.0016 Ry/Bohr).
The parameter is equivalent to force_thr_ev except for the unit. You may choose either you like.

• Default: 0.001
• Unit: Ry/Bohr (25.7112 eV/Angstrom)

force_thr_ev

• Type: Real
• Description: Threshold of the force convergence in eV/Angstrom. The threshold is compared with the largest
force among all of the atoms. The recommended value for using atomic orbitals is 0.04 eV/Angstrom (0.0016
Ry/Bohr). The parameter is equivalent to force_thr except for the unit. You may choose either you like.

• Default: 0.0257112
• Unit: eV/Angstrom (0.03889 Ry/Bohr)

13.1. Full List of INPUT Keywords 124

ABACUS

force_thr_ev2

• Type: Real
• Description: The calculated force will be set to 0 when it is smaller than the parameter force_thr_ev2.
• Default: 0.0
• Unit: eV/Angstrom

relax_bfgs_w1

• Type: Real
• Description: This variable controls the Wolfe condition for Broyden–Fletcher–Goldfarb–Shanno (BFGS) algo-
rithm used in geometry relaxation. You can look into the paper Phys.Chem.Chem.Phys.,2000,2,2177 for more
information.

• Default: 0.01

relax_bfgs_w2

• Type: Real
• Description: This variable controls the Wolfe condition for Broyden–Fletcher–Goldfarb–Shanno (BFGS) algo-
rithm used in geometry relaxation. You can look into the paper Phys.Chem.Chem.Phys.,2000,2,2177 for more
information.

• Default: 0.5

relax_bfgs_rmax

• Type: Real
• Description: This variable is for geometry optimization. It stands for the maximal movement of all the atoms.
The sum of the movements from all atoms can be increased during the optimization steps. However, it can not be
larger than relax_bfgs_rmax

• Unit: Bohr
• Default: 0.8

relax_bfgs_rmin

• Type: Real
• Description: This variable is for geometry optimization. It indicates the minimal movement of all the atoms.
When the movement of all the atoms is smaller than relax_bfgs_rmin Bohr, and the force convergence is still not
achieved, the calculation will break down.

• Default: 1e-5
• Unit: Bohr

13.1. Full List of INPUT Keywords 125

ABACUS

relax_bfgs_init

• Type: Real
• Description: This variable is for geometry optimization. It stands for the sum of initial movements of all of the
atoms.

• Default: 0.5
• Unit: Bohr

cal_stress

• Type: Boolean
• Description:

– True: calculate the stress at the end of the electronic iteration
– False: no calculation of the stress at the end of the electronic iteration

• Default: True if calculation is cell-relax, False otherwise.

stress_thr

• Type: Real
• Description: The threshold of the stress convergence. The threshold is compared with the largest component of
the stress tensor.

• Default: 0.5
• Unit: kbar

press1, press2, press3

• Type: Real
• Description: The external pressures along three axes. Positive input value is taken as compressive stress.
• Default: 0
• Unit: kbar

fixed_axes

• Type: String
• Availability: only used when calculation set to cell-relax
• Description: Axes that are fixed during cell relaxation. Possible choices are:

– None: default; all of the axes can relax
– volume: relaxation with fixed volume
– shape: fix shape but change volume (i.e. only lattice constant changes)
– a: fix a axis during relaxation
– b: fix b axis during relaxation

13.1. Full List of INPUT Keywords 126

ABACUS

– c: fix c axis during relaxation
– ab: fix both a and b axes during relaxation
– ac: fix both a and c axes during relaxation
– bc: fix both b and c axes during relaxation

Note : fixed_axes = “shape” and “volume” are only available for relax_new = True
• Default: None

fixed_ibrav

• Type: Boolean
• Availability: Must be used along with relax_new set to True, and a specific latname must be provided
• Description:

– True: the lattice type will be preserved during relaxation
– False: No restrictions are exerted during relaxation in terms of lattice type

Note: it is possible to use fixed_ibrav with fixed_axes, but please make sure you know what you
are doing. For example, if we are doing relaxation of a simple cubic lattice (latname = “sc”), and we
use fixed_ibrav along with fixed_axes = “volume”, then the cell is never allowed to move and as a
result, the relaxation never converges.

• Default: False

fixed_atoms

• Type: Boolean
• Description:

– True: The direct coordinates of atoms will be preserved during variable-cell relaxation.
– False: No restrictions are exerted on positions of all atoms. However, users can still fix certain components
of certain atoms by using the m keyword in STRU file. For the latter option, check the end of this instruction.

• Default: False

cell_factor

• Type: Real
• Description: Used in the construction of the pseudopotential tables. It should exceed the maximum linear con-
traction of the cell during a simulation.

• Default: 1.2
back to top

13.1. Full List of INPUT Keywords 127

ABACUS

13.1.8 Variables related to output information

These variables are used to control the output of properties.

out_mul

• Type: Boolean
• Availability: Numerical atomic orbital basis
• Description: Whether to print theMulliken population analysis result intoOUT.${suffix}/mulliken.txt.
In molecular dynamics calculations, the output frequency is controlled by out_interval.

• Default: False

out_freq_elec

• Type: Integer
• Description: The output frequency of the charge density (controlled by out_chg), wavefunction (controlled by

out_wfc_pw or out_wfc_r), and density matrix of localized orbitals (controlled by out_dm).
– >0: Output them every out_freq_elec iteration numbers in electronic iterations.
– 0: Output them when the electronic iteration is converged or reaches the maximal iteration number.

• Default: 0

out_chg

• Type: Boolean
• Description: Whether to output the charge density (in Bohr^-3) on real space grids into the density files in the
folder OUT.${suffix}. The files are named as:

– npsin = 1: SPIN1_CHG.cube;
– npsin = 2: SPIN1_CHG.cube, and SPIN2_CHG.cube;
– npsin = 4: SPIN1_CHG.cube, SPIN2_CHG.cube, SPIN3_CHG.cube, and SPIN4_CHG.cube.

The circle order of the charge density on real space grids is: x is the outer loop, then y and finally z (z is moving
fastest).
If EXX(exact exchange) is calculated, (i.e. dft_fuctional==hse/hf/pbe0/scan0/opt_orb or rpa==True), the Hexx®
files will be output in the folder OUT.${suffix} too, which can be read in NSCF calculation.

• Default: False

13.1. Full List of INPUT Keywords 128

ABACUS

out_pot

• Type: Integer
• Description:

– 1: Output the total local potential (i.e., local pseudopotential + Hartree potential + XC potential + external
electric field (if exists) + dipole correction potential (if exists) + …) on real space grids (in Ry) into files in
the folder OUT.${suffix}. The files are named as:
∗ npsin = 1: SPIN1_POT.cube;
∗ npsin = 2: SPIN1_POT.cube, and SPIN2_POT.cube;
∗ npsin = 4: SPIN1_POT.cube, SPIN2_POT.cube, SPIN3_POT.cube, and SPIN4_POT.cube.

– 2: Output the electrostatic potential on real space grids into OUT.${suffix}/ElecStaticPot.
cube. The Python script named tools/average_pot/aveElecStatPot.py can be used to cal-
culate the average electrostatic potential along the z-axis and outputs it into ElecStaticPot_AVE.
Please note that the total local potential refers to the local component of the self-consistent potential, excluding
the non-local pseudopotential. The distinction between the local potential and the electrostatic potential is as
follows: local potential = electrostatic potential + XC potential.

• Default: 0

out_dm

• Type: Boolean
• Availability: Numerical atomic orbital basis (gamma-only algorithm)
• Description: Whether to output the density matrix of localized orbitals into files in the folder OUT.${suffix}.
The files are named as:

– npsin = 1: SPIN1_DM;
– npsin = 2: SPIN1_DM, and SPIN2_DM.

• Default: False

out_dm1

• Type: Boolean
• Availability: Numerical atomic orbital basis (multi-k points)
• Description: Whether to output the density matrix of localized orbitals into files in the folder OUT.${suffix}.
The density matrices are written in the format of sparse matrices, as mentioned in out_mat_hs2. The files are named
as:

– npsin = 1: data-DMR-sparse_SPIN0.csr;
– npsin = 2: data-DMR-sparse_SPIN0.csr, and data-DMR-sparse_SPIN1.csr.

• Default: False

13.1. Full List of INPUT Keywords 129

ABACUS

out_wfc_pw

• Type: Integer
• Availability: Plane wave basis or get_wf calculation in numerical atomic orbital basis
• Description:

– 1: Output the coefficients of wave functions into text files named OUT.${suffix}/WAVEFUNC${K}.
txt, where ${K} is the index of k points.

– 2: results are stored in binary files named OUT.${suffix}/WAVEFUNC${K}.dat.
• Default: 0

out_wfc_r

• Type: Boolean
• Availability: Plane wave basis or get_wf calculation in numerical atomic orbital basis
• Description: Whether to output real-space wave functions into OUT.suffix/wfc_realspace/
wfc_realspace_${K}_${B}, where ${K} is the index of k points, ${B} is the index of bands.

• Default: False

out_wfc_lcao

• Type: Integer
• Availability: Numerical atomic orbital basis
• Description: Whether to output the wavefunction coefficients into files in the folder OUT.${suffix}. The files
are named as:

– 0: no output
– 1: (txt format)

∗ gamma-only: LOWF_GAMMA_S1.txt;
∗ non-gamma-only: LOWF_K_${k}.txt, where ${k} is the index of k points.

– 2: (binary format)
∗ gamma-only: LOWF_GAMMA_S1.dat;
∗ non-gamma-only: LOWF_K_${k}.dat, where ${k} is the index of k points.

The corresponding sequence of the orbitals can be seen in Basis Set.
Also controled by out_interval and out_app_flag.

• Default: Flase

13.1. Full List of INPUT Keywords 130

ABACUS

out_dos

• Type: Boolean
• Description: Whether to output the density of states (DOS). For more information, refer to the dos.md.
• Default: False

out_band

• Type: Boolean Integer(optional)
• Description: Whether to output the band structure (in eV), optionally output precision can be set by a second
parameter, default is 8. For more information, refer to the band.md

• Default: False

out_proj_band

• Type: Boolean
• Description: Whether to output the projected band structure. For more information, refer to the band.md

• Default: False

out_stru

• Type: Boolean
• Description: Whether to output structure files per ionic step in geometry relaxation calculations into OUT.
${suffix}/STRU_ION${istep}_D, where ${istep} is the ionic step.

• Default: False

out_bandgap

• Type: Boolean
• Description: Whether to print the bandgap per electronic iteration into OUT.${suffix}/
running_${calculation}.log. The value of bandgaps can be obtained by searching for the keyword:

– nupdown > 0: E_bandgap_up and E_bandgap_dw
– nupdown = 0: E_bandgap

• Default: False

13.1. Full List of INPUT Keywords 131

ABACUS

out_level

• Type: String
• Description: Control the output level of information in OUT.${suffix}/running_${calculation}.
log.

– ie: electronic iteration level, which prints useful information for electronic iterations;
– i: geometry relaxation level, which prints some information for geometry relaxations additionally;
– m: molecular dynamics level, which does not print some information for simplicity.

• Default: ie

out_alllog

• Type: Boolean
• Description: Whether to print information into individual logs from all ranks in an MPI run.

– True: Information from each rank will be written into individual files named OUT.${suffix}/
running_${calculation}_${rank+1}.log.

– False: Information will only be written from rank 0 into a file named OUT.${suffix}/
running_${calculation}.log.

• Default: False

out_mat_hs

• Type: Boolean Integer(optional)
• Availability: Numerical atomic orbital basis
• Description: Whether to print the upper triangular part of the Hamiltonian matrices (in Ry) and overlap matrices
for each k point into files in the directory OUT.${suffix}. The second number controls precision. For more
information, please refer to hs_matrix.md. Also controled by out_interval and out_app_flag.

• Default: False 8

out_mat_r

• Type: Boolean
• Availability: Numerical atomic orbital basis (not gamma-only algorithm)
• Description: Whether to print the matrix representation of the position matrix (in Bohr) into a file named
data-rR-tr in the directory OUT.${suffix}. For more information, please refer to position_matrix.md.

• Default: False

13.1. Full List of INPUT Keywords 132

ABACUS

out_mat_hs2

• Type: Boolean
• Availability: Numerical atomic orbital basis (not gamma-only algorithm)
• Description: Whether to print files containing the Hamiltonian matrix H(R) (in Ry) and overlap matrix S(R)
into files in the directory OUT.${suffix}. For more information, please refer to hs_matrix.md.

• Default: False

out_mat_t

• Type: Boolean
• Availability: Numerical atomic orbital basis (not gamma-only algorithm)
• Description: For LCAO calculations, if out_mat_t is set to 1, ABACUS will generate files containing the kinetic
energy matrix T (R) (in Ry). The format will be the same as the Hamiltonian matrix H(R) and overlap matrix
S(R) as mentioned in out_mat_hs2. The name of the files will be data-TR-sparse_SPIN0.csr and so on.
Also controled by out_interval and out_app_flag.

• Default: False

out_mat_dh

• Type: Boolean
• Availability: Numerical atomic orbital basis (not gamma-only algorithm)
• Description: Whether to print files containing the derivatives of the Hamiltonian matrix (in Ry/Bohr). The format
will be the same as the Hamiltonian matrix H(R) and overlap matrix S(R) as mentioned in out_mat_hs2. The
name of the files will be data-dHRx-sparse_SPIN0.csr and so on. Also controled by out_interval and
out_app_flag.

• Default: False

out_mat_xc

• Type: Boolean
• Availability: Numerical atomic orbital basis
• Description: Whether to print the upper triangular part of the exchange-correlation matrices in Kohn-Sham
orbital representation (unit: Ry): ψi|V (semi-)local

xc + Vexx + VDFTU|ψj for each k point into files in the directory
OUT.${suffix}, which is useful for the subsequent GW calculation. (Note that currently DeePKS term is not
included.) The files are named k-$k-Vxc, the meaning of $kcorresponding to k point and spin is same as
hs_matrix.md.

• Default: False

13.1. Full List of INPUT Keywords 133

ABACUS

out_app_flag

• Type: Boolean
• Availability: Numerical atomic orbital basis (not gamma-only algorithm)
• Description: Whether to output r(R), H(R), S(R), T (R), dH(R), H(k), S(k) and wfc(k) matrices in
an append manner during molecular dynamics calculations. Check input parameters out_mat_r, out_mat_hs2,
out_mat_t, out_mat_dh, out_mat_hs and out_wfc_lcao for more information.

• Default: true

out_ndigits

• Type: Integar
• Availability: out_mat_hs 1 case presently.
• Description: Controls the length of decimal part of output data, such as charge density, Hamiltonian matrix,
Overlap matrix and so on.

• Default: 8

out_interval

• Type: Integer
• Availability: Numerical atomic orbital basis
• Description: Control the interval for printing Mulliken population analysis, r(R), H(R), S(R), T (R), dH(R),
H(k), S(k) and wfc(k) matrices during molecular dynamics calculations. Check input parameters out_mul,
out_mat_r, out_mat_hs2, out_mat_t, out_mat_dh, out_mat_hs and out_wfc_lcao for more information, respec-
tively.

• Default: 1

band_print_num

• Type: Integer
• Availability: PW basis
• Description: If you want to plot a partial charge density contributed from some chosen bands.
band_print_num define the number of band list. The result can be found in “band*.cube”.

• Default: 0

bands_to_print

• Type: vector
• Availability: band_print_num > 0
• Description: define which band you want to choose for partial charge density.
• Default: []

13.1. Full List of INPUT Keywords 134

ABACUS

out_element_info

• Type: Boolean
• Description: Whether to print element information into files in the directory OUT.${suffix}/
${element_label}, including pseudopotential and orbital information of the element (in atomic Ryberg
units).

• Default: False

restart_save

• Type: Boolean
• Availability: Numerical atomic orbital basis
• Description: Whether to save charge density files per ionic step, which are used to restart calculations. According
to the value of read_file_dir:

– auto: These files are saved in folder OUT.${suffix}/restart/;
– other: These files are saved in folder ${read_file_dir}/restart/.

If EXX(exact exchange) is calculated (i.e. dft_fuctional==hse/hf/pbe0/scan0/opt_orb or rpa==True), the Hexx(k)
files for each k-point will also be saved in the above folder, which can be read in EXX calculation with
restart_load==True.

• Default: False

restart_load

• Type: Boolean
• Availability: Numerical atomic orbital basis
• Description: If restart_save is set to true and an electronic iteration is finished, calculations can be restarted from
the charge density file, which are saved in the former calculation. Please ensure read_file_dir is correct, and the
charge density file exist.
If EXX(exact exchange) is calculated (i.e. dft_fuctional==hse/hf/pbe0/scan0/opt_orb or rpa==True), the Hexx(k)
files in the same folder for each k-point will also be read.

• Default: False

rpa

• Type: Boolean
• Description: Generate output files used in rpa calculations.
• Default: False

back to top

13.1. Full List of INPUT Keywords 135

ABACUS

13.1.9 Density of states

These variables are used to control the calculation of DOS. Detailed introduction

dos_edelta_ev

• Type: Real
• Description: the step size in writing Density of States (DOS)
• Default: 0.01
• Unit: eV

dos_sigma

• Type: Real
• Description: the width of the Gaussian factor when obtaining smeared Density of States (DOS)
• Default: 0.07
• Unit: eV

dos_scale

• Type: Real
• Description: Defines the energy range of DOS output as (emax-emin)*(1+dos_scale), centered at (emax+emin)/2.
This parameter will be used when dos_emin and dos_emax are not set.

• Default: 0.01
• Unit: eV

dos_emin_ev

• Type: Real
• Description: the minimal range for Density of States (DOS)

– If set, “dos_scale” will be ignored.
• Default: Minimal eigenenergy of Ĥ
• Unit: eV

13.1. Full List of INPUT Keywords 136

https://github.com/deepmodeling/abacus-develop/blob/develop/docs/advanced/elec_properties/dos.md

ABACUS

dos_emax_ev

• Type: Real
• Description: the maximal range for Density of States (DOS)

– If set, “dos_scale” will be ignored.
• Default: Maximal eigenenergy of Ĥ
• Unit: eV

dos_nche

• Type: Integer The order of Chebyshev expansions when using Stochastic Density Functional Theory (SDFT) to
calculate DOS.

• Default: 100
back to top

13.1.10 NAOs

These variables are used to control the generation of numerical atomic orbitals (NAOs), whose radial parts are linear
combinations of spherical Bessel functions with a node (i.e., evaluate to zero) at the cutoff radius. In plane-wave-based
calculations, necessary information will be printed into OUT.${suffix}/orb_matrix.${i}.dat, which serves
as an input file for the generation of NAOs. Please check SIAB package for more information.

bessel_nao_ecut

• Type: Real
• Description: “Energy cutoff” (in Ry) of spherical Bessel functions. The number of spherical Bessel functions that
constitute the radial parts of NAOs is determined by sqrt(bessel_nao_ecut)×bessel_nao_rcut/π.

• Default: ecutwfc

bessel_nao_tolerence

• Type: Real
• Description: tolerance when searching for the zeros of spherical Bessel functions.
• Default: 1.0e-12

bessel_nao_rcut

• Type: Real
• Description: Cutoff radius (in Bohr) and the common node of spherical Bessel functions used to construct the
NAOs.

• Default: 6.0

13.1. Full List of INPUT Keywords 137

ABACUS

bessel_nao_smooth

• Type: Boolean

• Description: if True, NAOs will be smoothed near the cutoff radius by 1 − exp
(
− (r−rcut)

2

2σ2

)
. See

bessel_nao_rcut for rcut and bessel_nao_sigma for σ.
• Default: True

bessel_nao_sigma

• Type: Real
• Description: Smoothing range (in Bohr). See also bessel_nao_smooth.
• Default: 0.1

back to top

13.1.11 DeePKS

These variables are used to control the usage of DeePKS method (a comprehensive data-driven approach to improve the
accuracy of DFT). Warning: this function is not robust enough for the current version. Please try the following variables
at your own risk:

deepks_out_labels

• Type: Boolean
• Availability: numerical atomic orbital basis
• Description: print energy and force labels and descriptors for DeePKS training
• Note: In LCAO calculation, the path of a numerical descriptor (an orb file) is needed to be specified under the
NUMERICAL_DESCRIPTOR tag in the STRU file. For example:

NUMERICAL_ORBITAL
H_gga_8au_60Ry_2s1p.orb
O_gga_7au_60Ry_2s2p1d.orb

NUMERICAL_DESCRIPTOR
jle.orb

• Default: False

deepks_scf

• Type: Boolean
• Availability: numerical atomic orbital basis
• Description: perform self-consistent field iteration in DeePKS method
• Note: A trained, traced model file is needed.
• Default: False

13.1. Full List of INPUT Keywords 138

ABACUS

deepks_model

• Type: String
• Availability: numerical atomic orbital basis and deepks_scf is true
• Description: the path of the trained, traced neural network model file generated by deepks-kit
• Default: None

bessel_descriptor_lmax

• Type: Integer
• Availability: gen_bessel calculation
• Description: the maximum angular momentum of the Bessel functions generated as the projectors in DeePKS
• NOte: To generate such projectors, set calculation type to gen_bessel in ABACUS. See also calculation.
• Default: 2

bessel_descriptor_ecut

• Type: Real
• Availability: gen_bessel calculation
• Description: energy cutoff of Bessel functions
• Default: same as ecutwfc
• Unit: Ry

bessel_descriptor_tolerence

• Type: Real
• Availability: gen_bessel calculation
• Description: tolerance for searching the zeros of Bessel functions
• Default: 1.0e-12

bessel_descriptor_rcut

• Type: Real
• Availability: gen_bessel calculation
• Description: cutoff radius of Bessel functions
• Default: 6.0
• Unit: Bohr

13.1. Full List of INPUT Keywords 139

https://github.com/deepmodeling/deepks-kit

ABACUS

bessel_descriptor_smooth

• Type: Boolean
• Availability: gen_bessel calculation
• Description: smooth the Bessel functions at radius cutoff
• Default: False

bessel_descriptor_sigma

• Type: Real
• Availability: gen_bessel calculation
• Description: smooth parameter at the cutoff radius of projectors
• Default: 0.1
• Unit: Bohr

deepks_bandgap

• Type: Boolean
• Availability: numerical atomic orbital basis and deepks_scf is true
• Description: include bandgap label for DeePKS training
• Default: False

deepks_out_unittest

• Type: Boolean
• Description: generate files for constructing DeePKS unit test
• Note: Not relevant when running actual calculations. When set to 1, ABACUS needs to be run with only 1 process.
• Default: False

back to top

13.1.12 OFDFT: orbital free density functional theory

of_kinetic

• Type: String
• Availability: OFDFT
• Description: The type of KEDF (kinetic energy density functional).

– wt: Wang-Teter.
– tf: Thomas-Fermi.
– vw: von Weizsäcker.

13.1. Full List of INPUT Keywords 140

ABACUS

– tf+: TFλvW, the parameter λ can be set by of_vw_weight.
– lkt: Luo-Karasiev-Trickey.

• Default: wt

of_method

• Type: String
• Availability: OFDFT
• Description: The optimization method used in OFDFT.

– cg1: Polak-Ribiere. Standard CG algorithm.
– cg2: Hager-Zhang (generally faster than cg1).
– tn: Truncated Newton algorithm.

• Default:tn

of_conv

• Type: String
• Availability: OFDFT
• Description: Criterion used to check the convergence of OFDFT.

– energy: Ttotal energy changes less than of_tole.
– potential: The norm of potential is less than of_tolp.
– both: Both energy and potential must satisfy the convergence criterion.

• Default: energy

of_tole

• Type: Real
• Availability: OFDFT
• Description: Tolerance of the energy change for determining the convergence.
• Default: 2e-6
• Unit: Ry

of_tolp

• Type: Real
• Availability: OFDFT
• Description: Tolerance of potential for determining the convergence.
• Default: 1e-5
• Unit: Ry

13.1. Full List of INPUT Keywords 141

ABACUS

of_tf_weight

• Type: Real
• Availability: OFDFT with of_kinetic=tf, tf+, wt

• Description: Weight of TF KEDF (kinetic energy density functional).
• Default: 1.0

of_vw_weight

• Type: Real
• Availability: OFDFT with of_kinetic=vw, tf+, wt, lkt

• Description: Weight of vW KEDF (kinetic energy density functional).
• Default: 1.0

of_wt_alpha

• Type: Real
• Availability: OFDFT with of_kinetic=wt
• Description: Parameter alpha of WT KEDF (kinetic energy density functional).
• Default: 5/6

of_wt_beta

• Type: Real
• Availability: OFDFT with of_kinetic=wt
• Description: Parameter beta of WT KEDF (kinetic energy density functional).
• Default: 5/6

of_wt_rho0

• Type: Real
• Availability: OFDFT with of_kinetic=wt
• Description: The average density of system.
• Default: 0.0
• Unit: Bohr^-3

13.1. Full List of INPUT Keywords 142

ABACUS

of_hold_rho0

• Type: Boolean
• Availability: OFDFT with of_kinetic=wt
• Description: Whether to fix the average density rho0.

– True: rho0 will be fixed even if the volume of system has changed, it will be set to True automatically if
of_wt_rho0 is not zero.

– False: rho0 will change if volume of system has changed.
• Default: False

of_lkt_a

• Type: Real
• Availability: OFDFT with of_kinetic=lkt
• Description: Parameter a of LKT KEDF (kinetic energy density functional).
• Default: 1.3

of_read_kernel

• Type: Boolean
• Availability: OFDFT with of_kinetic=wt
• Description: Whether to read in the kernel file.

– True: The kernel of WT KEDF (kinetic energy density functional) will be filled from the file specified by
of_kernel_file.

– False: The kernel of WT KEDF (kinetic energy density functional) will be filled from formula.
• Default: False

of_kernel_file

• Type: String
• Availability: OFDFT with of_read_kernel=True
• Description: The name of WT kernel file.
• Default: WTkernel.txt

13.1. Full List of INPUT Keywords 143

ABACUS

of_full_pw

• Type: Boolean
• Availability: OFDFT
• Description: Whether to use full planewaves.

– True: Ecut will be ignored while collecting planewaves, so that all planewaves will be used in FFT.
– False: Only use the planewaves inside ecut, the same as KSDFT.

• Default: True

of_full_pw_dim

• Type: Integer
• Availability: OFDFT with of_full_pw = True

• Description: Specify the parity of FFT dimensions.
– 0: either odd or even.
– 1: odd only.
– 2: even only.

Note: Even dimensions may cause slight errors in FFT. It should be ignorable in ofdft calculation, but it may make
Cardinal B-spline interpolation unstable, so please set of_full_pw_dim = 1 if nbspline != -1.

• Default: 0
back to top

13.1.13 Electric field and dipole correction

These variables are relevant to electric field and dipole correction

efield_flag

• Type: Boolean
• Description: added the electric field.

– True: A saw-like potential simulating an electric field is added to the bare ionic potential.
– False: Not added the electric field.

• Default: False

13.1. Full List of INPUT Keywords 144

ABACUS

dip_cor_flag

• Type: Boolean
• Availability: with dip_cor_flag = True and efield_flag = True.
• Description: Added a dipole correction to the bare ionic potential.

– True2/7A dipole correction is also added to the bare ionic potential.
– False: A dipole correction is not added to the bare ionic potential.

Note: If you want no electric field, parameter efield_amp should be zero. Must be used ONLY in a slab
geometry for surface alculations, with the discontinuity FALLING IN THE EMPTY SPACE.

• Default: False

efield_dir

• Type: Integer
• Availability: with efield_flag = True.
• Description: The direction of the electric field or dipole correction is parallel to the reciprocal lattice vector, so
the potential is constant in planes defined by FFT grid points, efield_dir can set to 0, 1 or 2.

– 0: parallel to b1 = 2π(a2×a3)
a1·(a2×a3)

– 1: parallel to b2 = 2π(a3×a1)
a1·(a2×a3)

– 2: parallel to b3 = 2π(a1×a2)
a1·(a2×a3)

• Default: 2

efield_pos_max

• Type: Real
• Availability: with efield_flag = True.
• Description: Position of the maximum of the saw-like potential along crystal axis efield_dir, within the unit cell,
0 <= efield_pos_max < 1.

• Default: Autoset to center of vacuum - width of vacuum / 20

efield_pos_dec

• Type: Real
• Availability: with efield_flag = True.
• Description: Zone in the unit cell where the saw-like potential decreases, 0 < efield_pos_dec < 1.
• Default: Autoset to width of vacuum / 10

13.1. Full List of INPUT Keywords 145

ABACUS

efield_amp

• Type: Real
• Availability: with efield_flag = True.
• Description: Amplitude of the electric field. The saw-like potential increases with slope efield_amp
in the region from efield_pos_max+efield_pos_dec-1) to (efield_pos_max), then decreases until
(efield_pos_max+efield_pos_dec), in units of the crystal vector efield_dir.
Note: The change of slope of this potential must be located in the empty region, or else unphysical forces
will result.

• Default: 0.0
• Unit: a.u., 1 a.u. = 51.4220632*10^10 V/m.

back to top

13.1.14 Gate field (compensating charge)

These variables are relevant to gate field (compensating charge) Detailed introduction

gate_flag

• Type: Boolean
• Description: Controls the addition of compensating charge by a charged plate for charged cells.

– true: A charged plate is placed at the zgate position to add compensating charge. The direction is determined
by efield_dir.

– false: No compensating charge is added.
• Default: false

zgate

• Type: Real
• Description: position of the charged plate in the unit cell
• Unit: Unit cell size
• Default: 0.5
• Constraints: 0 <= zgate < 1

13.1. Full List of INPUT Keywords 146

https://github.com/deepmodeling/abacus-develop/blob/develop/docs/advanced/scf/advanced.md#compensating-charge

ABACUS

block

• Type: Boolean
• Description: Controls the addition of a potential barrier to prevent electron spillover.

– true: A potential barrier is added from block_down to block_up with a height of block_height. If
dip_cor_flag is set to true, efield_pos_dec is used to smoothly increase and decrease the potential barrier.

– false: No potential barrier is added.
• Default: false

block_down

• Type: Real
• Description: lower beginning of the potential barrier
• Unit: Unit cell size
• Default: 0.45
• Constraints: 0 <= block_down < block_up < 1

block_up

• Type: Real
• Description: upper beginning of the potential barrier
• Unit: Unit cell size
• Default: 0.55
• Constraints: 0 <= block_down < block_up < 1

block_height

• Type: Real
• Description: height of the potential barrier
• Unit: Rydberg
• Default: 0.1

back to top

13.1.15 Exact Exchange

These variables are relevant when using hybrid functionals.
Availablity: dft_functional==hse/hf/pbe0/scan0/opt_orb or rpa==True, and basis_type==lcao/lcao_in_pw

13.1. Full List of INPUT Keywords 147

ABACUS

exx_hybrid_alpha

• Type: Real
• Description: fraction of Fock exchange in hybrid functionals, so that EX = αEX + (1− α)EX,LDA/GGA

• Default:
– 1: if dft_functional==hf
– 0.25: else

exx_hse_omega

• Type: Real
• Description: range-separation parameter in HSE functional, such that 1/r = erfc(ωr)/r + erf(ωr)/r
• Default: 0.11

exx_separate_loop

• Type: Boolean
• Description: There are two types of iterative approaches provided by ABACUS to evaluate Fock exchange.

– False: Start with a GGA-Loop, and then Hybrid-Loop, in which EXX Hamiltonian Hexx is updated with
electronic iterations.

– True: A two-step method is employed, i.e. in the inner iterations, density matrix is updated, while in the
outer iterations,Hexx is calculated based on density matrix that converges in the inner iteration.

• Default: True

exx_hybrid_step

• Type: Integer
• Availability: exx_separate_loop==1
• Description: the maximal iteration number of the outer-loop, where the Fock exchange is calculated
• Default: 100

exx_mixing_beta

• Type: Real
• Availability: exx_separate_loop==1
• Description: mixing_beta for densty matrix in each iteration of the outer-loop
• Default: 1.0

13.1. Full List of INPUT Keywords 148

ABACUS

exx_lambda

• Type: Real
• Availability: basis_type==lcao_in_pw
• Description: It is used to compensate for divergence points at G=0 in the evaluation of Fock exchange using

lcao_in_pw method.
• Default: 0.3

exx_pca_threshold

• Type: Real
• Description: To accelerate the evaluation of four-center integrals (ik|jl), the product of atomic orbitals are ex-
panded in the basis of auxiliary basis functions (ABF): ΦiΦj ∼ Ck

ijPk. The size of the ABF (i.e. number of
Pk) is reduced using principal component analysis. When a large PCA threshold is used, the number of ABF will
be reduced, hence the calculation becomes faster. However, this comes at the cost of computational accuracy. A
relatively safe choice of the value is 1e-4.

• Default: 1E-4

exx_c_threshold

• Type: Real
• Description: See also the entry exx_pca_threshold. Smaller components (less than exx_c_threshold) of the Ck

ij

matrix are neglected to accelerate calculation. The larger the threshold is, the faster the calculation and the lower
the accuracy. A relatively safe choice of the value is 1e-4.

• Default: 1E-4

exx_v_threshold

• Type: Real
• Description: See also the entry exx_pca_threshold. With the approximation ΦiΦj ∼ Ck

ijPk, the four-center
integral in Fock exchange is expressed as (ik|jl) = Σa,bC

a
ijVabC

b
kl, where Vab = (Pa|Pb) is a double-center

integral. Smaller values of the V matrix can be truncated to accelerate calculation. The larger the threshold is, the
faster the calculation and the lower the accuracy. A relatively safe choice of the value is 0, i.e. no truncation.

• Default: 1E-1

exx_dm_threshold

• Type: Real
• Description: The Fock exchange can be expressed as Σk,l(ik|jl)Dkl where D is the density matrix. Smaller
values of the density matrix can be truncated to accelerate calculation. The larger the threshold is, the faster the
calculation and the lower the accuracy. A relatively safe choice of the value is 1e-4.

• Default: 1E-4

13.1. Full List of INPUT Keywords 149

ABACUS

exx_c_grad_threshold

• Type: Real
• Description: See also the entry exx_pca_threshold. ∇Ck

ij is used in force and stress. Smaller components (less
than exx_c_grad_threshold) of the ∇Ck

ij matrix are neglected to accelerate calculation. The larger the threshold
is, the faster the calculation and the lower the accuracy. A relatively safe choice of the value is 1e-4.

• Default: 1E-4

exx_v_grad_threshold

• Type: Real
• Description: See also the entry exx_pca_threshold. With the approximation ΦiΦj ∼ Ck

ijPk, the four-center
integral in Fock exchange is expressed as (ik|jl) = Σa,bC

a
ijVabC

b
kl, where Vab = (Pa|Pb) is a double-center

integral. ∇Vab is used in force and stress. Smaller values of the V matrix can be truncated to accelerate calculation.
The larger the threshold is, the faster the calculation and the lower the accuracy. A relatively safe choice of the
value is 0, i.e. no truncation.

• Default: 1E-1

exx_schwarz_threshold

• Type: Real
• Description: In practice the four-center integrals are sparse, and using Cauchy-Schwartz inequality, we can
find an upper bound of each integral before carrying out explicit evaluations. Those that are smaller than
exx_schwarz_threshold will be truncated. The larger the threshold is, the faster the calculation and the lower
the accuracy. A relatively safe choice of the value is 1e-5. (Currently not used)

• Default: 0

exx_cauchy_threshold

• Type: Real
• Description: In practice the Fock exchange matrix is sparse, and using Cauchy-Schwartz inequality, we can find
an upper bound of each matrix element before carrying out explicit evaluations. Those that are smaller than
exx_cauchy_threshold will be truncated. The larger the threshold is, the faster the calculation and the lower the
accuracy. A relatively safe choice of the value is 1e-7.

• Default: 1E-7

exx_cauchy_force_threshold

• Type: Real
• Description: In practice the Fock exchange matrix in force is sparse, and using Cauchy-Schwartz inequality, we
can find an upper bound of each matrix element before carrying out explicit evaluations. Those that are smaller
than exx_cauchy_force_threshold will be truncated. The larger the threshold is, the faster the calculation and the
lower the accuracy. A relatively safe choice of the value is 1e-7.

• Default: 1E-7

13.1. Full List of INPUT Keywords 150

ABACUS

exx_cauchy_stress_threshold

• Type: Real
• Description: In practice the Fock exchange matrix in stress is sparse, and using Cauchy-Schwartz inequality, we
can find an upper bound of each matrix element before carrying out explicit evaluations. Those that are smaller
than exx_cauchy_stress_threshold will be truncated. The larger the threshold is, the faster the calculation and the
lower the accuracy. A relatively safe choice of the value is 1e-7.

• Default: 1E-7

exx_ccp_threshold

• Type: Real
• Description: It is related to the cutoff of on-site Coulomb potentials. (Currently not used)
• Default: 1e-8

exx_ccp_rmesh_times

• Type: Real
• Description: This parameter determines how many times larger the radial mesh required for calculating Columb
potential is to that of atomic orbitals. For HSE, setting it to 1 is enough. But for PBE0, a much larger number must
be used.

• Default:
– 1.5: if dft_functional==hse
– 5: else

exx_distribute_type

• Type: String
• Description: When running in parallel, the evaluation of Fock exchange is done by distributing atom pairs on
different processes, then gather the results. exx_distribute_type governs the mechanism of distribution. Available
options are htime, order, kmean1 and kmeans2.

– order: Atom pairs are simply distributed by their orders.
– htime: The balance in time is achieved on each processor, hence if the memory is sufficient, this is the
recommended method.

– kmeans1 , kmeans2: Two methods where the k-means clustering method is used to reduce memory
requirement. They might be necessary for very large systems. (Currently not used)

• Default: htime

13.1. Full List of INPUT Keywords 151

ABACUS

exx_opt_orb_lmax

• Type: Integer
• Availability: dft_functional==opt_orb
• Description: The maximum l of the spherical Bessel functions, when the radial part of opt-ABFs are generated as
linear combinations of spherical Bessel functions. A reasonable choice is 2.

• Default: 0

exx_opt_orb_ecut

• Type: Real
• Availability: dft_functional==opt_orb
• Description: The cut-off of plane wave expansion, when the plane wave basis is used to optimize the radial ABFs.
A reasonable choice is 60.

• Default: 0
• Unit: Ry

exx_opt_orb_tolerence

• Type: Real
• Availability: dft_functional==opt_orb
• Description: The threshold when solving for the zeros of spherical Bessel functions. A reasonable choice is 1e-12.
• Default: 0

exx_real_number

• Type: Boolean
• Description:

– True: Enforce LibRI to use double data type.
– False: Enforce LibRI to use complex data type.

• Default: depends on the gamma_only option
– True: if gamma_only
– False: else

back to top

13.1. Full List of INPUT Keywords 152

ABACUS

13.1.16 Molecular dynamics

These variables are used to control molecular dynamics calculations. For more information, please refer to md.md in
detail.

md_type

• Type: String
• Description: Control the algorithm to integrate the equation of motion for molecular dynamics (MD), see md.md
in detail.

– fire: a MD-based relaxation algorithm, named fast inertial relaxation engine.
– nve: NVE ensemble with velocity Verlet algorithm.
– nvt: NVT ensemble, see md_thermostat in detail.
– npt: Nose-Hoover style NPT ensemble, see md_pmode in detail.
– langevin: NVT ensemble with Langevin thermostat, see md_damp in detail.
– msst: MSST method, see msst_direction, msst_vel, msst_qmass, msst_vis, msst_tscale in detail.

• Default: nvt

md_nstep

• Type: Integer
• Description: The total number of molecular dynamics steps.
• Default: 10

md_dt

• Type: Real
• Description: The time step used in molecular dynamics calculations.
• Default: 1.0
• Unit: fs

md_thermostat

• Type: String
• Description: Specify the temperature control method used in NVT ensemble.

– nhc: Nose-Hoover chain, see md_tfreq and md_tchain in detail.
– anderson: Anderson thermostat, see md_nraise in detail.
– berendsen: Berendsen thermostat, see md_nraise in detail.
– rescaling: velocity Rescaling method 1, see md_tolerance in detail.
– rescale_v: velocity Rescaling method 2, see md_nraise in detail.

• Default: nhc

13.1. Full List of INPUT Keywords 153

ABACUS

md_tfirst, md_tlast

• Type: Real
• Description: The temperature used in molecular dynamics calculations.
If md_tfirst is unset or less than zero, init_vel is autoset to be true. If init_vel is true, the initial temperature
will be determined by the velocities read from STRU. In this case, if velocities are unspecified in STRU, the initial
temperature is set to zero.
If md_tfirst is set to a positive value and init_vel is true simultaneously, please make sure they are consistent,
otherwise abacus will exit immediately.
Note that md_tlast is only used in NVT/NPT simulations. If md_tlast is unset or less than zero, md_tlast
is set to md_tfirst. If md_tlast is set to be different from md_tfirst, ABACUSwill automatically change
the temperature from md_tfirst to md_tlast.

• Default: No default
• Unit: K

md_restart

• Type: Boolean
• Description: Control whether to restart molecular dynamics calculations and time-dependent density functional
theory calculations.

– True: ABACUS will read in ${read_file_dir}/Restart_md.dat to determine the current step
${md_step}, then read in the corresponding STRU_MD_${md_step} in the folder OUT.$suffix/
STRU/ automatically. For tddft, ABACUS will also read in LOWF_K_${kpoint} of the last step (You
need to set out_wfc_lcao=1 and out_app_flag=0 to obtain this file).

– False: ABACUS will start molecular dynamics calculations normally from the first step.
• Default: False

md_restartfreq

• Type: Integer
• Description: The output frequency of OUT.${suffix}/Restart_md.dat and structural files in the direc-
tory OUT.${suffix}/STRIU/, which are used to restart molecular dynamics calculations, see md_restart in
detail.

• Default: 5

md_dumpfreq

• Type: Integer
• Description: The output frequency of OUT.${suffix}/MD_dump in molecular dynamics calculations, which
including the information of lattices and atoms.

• Default: 1

13.1. Full List of INPUT Keywords 154

ABACUS

dump_force

• Type: Boolean
• Description: Whether to output atomic forces into the file OUT.${suffix}/MD_dump.
• Default: True

dump_vel

• Type: Boolean
• Description: Whether to output atomic velocities into the file OUT.${suffix}/MD_dump.
• Default: True

dump_virial

• Type: Boolean
• Description: Whether to output lattice virials into the file OUT.${suffix}/MD_dump.
• Default: True

md_seed

• Type: Integer
• Description: The random seed to initialize random numbers used in molecular dynamics calculations.

– < 0: No srand() function is called.
– >= 0: The function srand(md_seed) is called.

• Default: -1

md_tfreq

• Type: Real
• Description: Control the frequency of temperature oscillations during the simulation. If it is too large, the tem-
perature will fluctuate violently; if it is too small, the temperature will take a very long time to equilibrate with the
atomic system.
Note: It is a system-dependent empirical parameter, ranging from 1/(40*md_dt) to 1/(100*md_dt). An improper
choice might lead to the failure of jobs.

• Default: 1/40/md_dt
• Unit: fs−1

13.1. Full List of INPUT Keywords 155

ABACUS

md_tchain

• Type: Integer
• Description: Number of thermostats coupled with the particles in the NVT/NPT ensemble based on the Nose-
Hoover style non-Hamiltonian equations of motion.

• Default: 1

md_pmode

• Type: String
• Description: Specify the cell fluctuation mode in NPT ensemble based on the Nose-Hoover style non-Hamiltonian
equations of motion.

– iso: The three diagonal elements of the lattice are fluctuated isotropically.
– aniso: The three diagonal elements of the lattice are fluctuated anisotropically.
– tri: The lattice must be a lower-triangular matrix, and all six freedoms are fluctuated.

• Default: iso
• Relavent: md_tfreq, md_tchain, md_pcouple, md_pfreq, and md_pchain.

md_prec_level

• Type: Integer
• Description: Determine the precision level of variable-cell molecular dynamics calculations.

– 0: FFT grids do not change, only G vectors and K vectors are changed due to the change of lattice vector.
This level is suitable for cases where the variation of the volume and shape is not large, and the efficiency is
relatively higher.

– 2: FFT grids change per step. This level is suitable for cases where the variation of the volume and shape is
large, such as the MSST method. However, accuracy comes at the cost of efficiency.

• Default: 0

ref_cell_factor

• Type: Real
• Description: Construct a reference cell bigger than the initial cell. The reference cell has to be large enough so that
the lattice vectors of the fluctuating cell do not exceed the reference lattice vectors during MD. Typically, 1.02 ~
1.10 is sufficient. However, the cell fluctuations depend on the specific system and thermodynamic conditions. So
users must test for a proper choice. This parameters should be used in conjunction with erf_ecut, erf_height, and
erf_sigma.

• Default: 1.0

13.1. Full List of INPUT Keywords 156

ABACUS

md_pcouple

• Type: String
• Description: The coupled lattice vectors will scale proportionally in NPT ensemble based on the Nose-Hoover
style non-Hamiltonian equations of motion.

– none: Three lattice vectors scale independently.
– xyz: Lattice vectors x, y, and z scale proportionally.
– xy: Lattice vectors x and y scale proportionally.
– xz: Lattice vectors x and z scale proportionally.
– yz: Lattice vectors y and z scale proportionally.

• Default: none

md_pfirst, md_plast

• Type: Real
• Description: The target pressure used in NPT ensemble simulations, the default value of md_plast is
md_pfirst. If md_plast is set to be different from md_pfirst, ABACUS will automatically change the
target pressure from md_pfirst to md_plast.

• Default: -1.0
• Unit: kbar

md_pfreq

• Type: Real
• Description: The frequency of pressure oscillations during the NPT ensemble simulation. If it is too large, the
pressure will fluctuate violently; if it is too small, the pressure will take a very long time to equilibrate with the
atomic system.
Note: It is a system-dependent empirical parameter. An improper choice might lead to the failure of jobs.

• Default: 1/400/md_dt
• Unit: kbar−1

md_pchain

• Type: Integer
• Description: The number of thermostats coupled with the barostat in the NPT ensemble based on the Nose-Hoover
style non-Hamiltonian equations of motion.

• Default: 1

13.1. Full List of INPUT Keywords 157

ABACUS

lj_rcut

• Type: Real
• Description: Cut-off radius for Leonard Jones potential.
• Default: 8.5 (for He)
• Unit: Angstrom

lj_epsilon

• Type: Real
• Description: The value of epsilon for Leonard Jones potential.
• Default: 0.01032 (for He)
• Unit: eV

lj_sigma

• Type: Real
• Description: The value of sigma for Leonard Jones potential.
• Default: 3.405 (for He)
• Unit: Angstrom

pot_file

• Type: String
• Description: The filename of DP potential files, see md.md in detail.
• Default: graph.pb

msst_direction

• Type: Integer
• Description: The direction of the shock wave in the MSST method.

– 0: x direction
– 1: y direction
– 2: z direction

• Default: 2

13.1. Full List of INPUT Keywords 158

ABACUS

msst_vel

• Type: Real
• Description: The velocity of the shock wave in the MSST method.
• Default: 0.0
• Unit: Angstrom/fs

msst_vis

• Type: Real
• Description: Artificial viscosity in the MSST method.
• Default: 0.0
• Unit: g/(mol*Angstrom*fs)

msst_tscale

• Type: Real
• Description: The reduction percentage of the initial temperature used to compress volume in the MSST method.
• Default: 0.01

msst_qmass

• Type: Real
• Description: Inertia of the extended system variable. You should set a number larger than 0.
• Default: No default
• Unit: g2/(mol2 ∗ Angstrom4)

md_damp

• Type: Real
• Description: The damping parameter used to add fictitious force in the Langevin method.
• Default: 1.0
• Unit: fs

13.1. Full List of INPUT Keywords 159

ABACUS

md_tolerance

• Type: Real
• Description: Thr temperature tolerance for velocity rescaling. Velocities are rescaled if the current and target
temperature differ more than md_tolerance.

• Default: 100.0
• Unit: K

md_nraise

• Type: Integer
• Description:

– Anderson: The “collision frequency” parameter is given as 1/md_nraise.
– Berendsen: The “rise time” parameter is given in units of the time step: tau = md_nraise*md_dt, so
md_dt/tau = 1/md_nraise.

– Rescale_v: Every md_nraise steps the current temperature is rescaled to the target temperature.
• Default: 1

cal_syns

• Type: Boolean
• Description: Whether the asynchronous overlap matrix is calculated for Hefei-NAMD.
• Default: False

dmax

• Type: Real
• Description: The maximum displacement of all atoms in one step. This parameter is useful when cal_syns = True.
• Default: 0.01
• Unit: bohr

back to top

13.1.17 DFT+U correction

These variables are used to control DFT+U correlated parameters

13.1. Full List of INPUT Keywords 160

ABACUS

dft_plus_u

• Type: Integer
• Description: Determines whether to calculate the plus U correction, which is especially important for correlated
electrons.

– 1: Calculate plus U correction with radius-adjustable localized projections (with parameter on-
site_radius).

– 2: Calculate plus U correction using first zeta of NAOs as projections (this is old method for testing).
– 0: Do not calculate plus U correction.

• Default: 0

orbital_corr

• Type: Integer
• Description: Specifies which orbits need plus U correction for each atom type (l1, l2, l3, . . . for atom type 1, 2, 3,
respectively).

– -1: The plus U correction will not be calculated for this atom.
– 1: For p-electron orbits, the plus U correction is needed.
– 2: For d-electron orbits, the plus U correction is needed.
– 3: For f-electron orbits, the plus U correction is needed.

• Default: None

hubbard_u

• Type: Real
• Description: Specifies the Hubbard Coulomb interaction parameter U (eV) in plus U correction, which should be
specified for each atom unless the Yukawa potential is used.
Note: Since only the simplified scheme by Duradev is implemented, the ‘U’ here is actually U-effective,
which is given by Hubbard U minus Hund J.

• Default: 0.0

yukawa_potential

• Type: Boolean
• Description: Determines whether to use the local screen Coulomb potential method to calculate the values of U
and J.

– True: hubbard_u does not need to be specified.
– False: hubbard_u does need to be specified.

• Default: False

13.1. Full List of INPUT Keywords 161

ABACUS

yukawa_lambda

• Type: Real
• Availability: DFT+U with yukawa_potential = True.
• Description: The screen length of Yukawa potential. If left to default, the screen length will be calculated as an
average of the entire system. It’s better to stick to the default setting unless there is a very good reason.

• Default: Calculated on the fly.

uramping

• Type: Real
• Unit: eV
• Availability: DFT+U calculations with mixing_restart > 0.
• Description: Once uramping > 0.15 eV. DFT+U calculations will start SCF with U = 0 eV, namely nor-
mal LDA/PBE calculations. Once SCF restarts when drho<mixing_restart, U value will increase by
uramping eV. SCF will repeat above calcuations until U values reach target defined in hubbard_u. As for
uramping=1.0 eV, the recommendations of mixing_restart is around 5e-4.

• Default: -1.0.

omc

• Type: Integer
• Description: The parameter controls the form of occupation matrix control used.

– 0: No occupation matrix control is performed, and the onsite density matrix will be calculated from wave-
functions in each SCF step.

– 1: The first SCF step will use an initial density matrix read from a file named [initial_onsite.
dm](http://initial_onsite.dm/), but for later steps, the onsite density matrix will be updated.

– 2: The same onsite density matrix from initial_onsite.dm will be used throughout the entire calcu-
lation.

Note : The easiest way to create initial_onsite.dm is to run a DFT+U calculation, look for a file
named onsite.dm in the OUT.prefix directory, and make replacements there. The format of the file is
rather straight-forward.

• Default: 0

onsite_radius

• Type: Real
• Availability: dft_plus_u is set to 1
• Description:

– The Onsite-radius parameter facilitates modulation of the single-zeta portion of numerical atomic or-
bitals for projections for DFT+U.

13.1. Full List of INPUT Keywords 162

ABACUS

– The modulation algorithm includes a smooth truncation applied directly to the tail of the original orbital,

followed by normalization. Consider the function: $g(r;σ) =
{
1− exp

(
− (r−rc)

2

2σ2

)
, r < rc

0, r ≥ rc
$

– where σ is a parameter that controls the smoothing interval. A normalized function truncated smoothly at rc
can be represented as:

α(r) =
χ(r)g(r;σ)

⟨χ(r)g(r;σ), χ(r)g(r;σ)⟩
– To find an appropriate σ, the optimization process is as follows:
– Maximizing the overlap integral under a normalization constraint is equivalent tominimizing an error function:

min⟨χ(r)− α(r), χ(r)− α(r)⟩ subject to ⟨α(r), α(r)⟩ = 1

– Similar to the process of generating numerical atomic orbitals, this optimization choice often induces addi-
tional oscillations in the outcome. To suppress these oscillations, we may include a derivative term in the
objective function (f ′(r) ≡ df(r)/dr):

min [γ⟨χ(r)− α(r), χ(r)− α(r)⟩+ ⟨χ′(r)− α′(r), χ′(r)− α′(r)⟩] subject to ⟨α(r), α(r)⟩ = 1

– where γ is a parameter that adjusts the relative weight of the error function to the derivative error function.
• Unit: Bohr
• Default: 5.0

back to top

13.1.18 vdW correction

These variables are used to control vdW-corrected related parameters.

vdw_method

• Type: String
• Description: Specifies the method used for Van der Waals (VdW) correction. Available options are:

– d2: Grimme’s D2 dispersion correction method
– d3_0: Grimme’s DFT-D3(0) dispersion correction method
– d3_bj: Grimme’s DFTD3(BJ) dispersion correction method
– none: no vdW correction

• Default: none

vdw_s6

• Type: Real
• Availability: vdw_method is set to d2, d3_0, or d3_bj

13.1. Full List of INPUT Keywords 163

https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.20495
https://aip.scitation.org/doi/10.1063/1.3382344
https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.21759

ABACUS

• Description: This scale factor is used to optimize the interaction energy deviations in van der Waals (vdW) cor-
rected calculations. The recommended values of this parameter are dependent on the chosen vdW correction
method and the DFT functional being used. For DFT-D2, the recommended values are 0.75 (PBE), 1.2 (BLYP),
1.05 (B-P86), 1.0 (TPSS), and 1.05 (B3LYP). For DFT-D3, recommended values with different DFT functionals
can be found on the here. The default value of this parameter in ABACUS is set to be the recommended value for
PBE.

• Default:
– 0.75: if vdw_method is set to d2
– 1.0: if vdw_method is set to d3_0 or d3_bj

vdw_s8

• Type: Real
• Availability: vdw_method is set to d3_0 or d3_bj
• Description: This scale factor is relevant for D3(0) and D3(BJ) van der Waals (vdW) correction methods. The
recommended values of this parameter with different DFT functionals can be found on the webpage. The default
value of this parameter in ABACUS is set to be the recommended value for PBE.

• Default:
– 0.722: if vdw_method is set to d3_0
– 0.7875: if vdw_method is set to d3_bj

vdw_a1

• Type: Real
• Availability: vdw_method is set to d3_0 or d3_bj
• Description: This damping function parameter is relevant for D3(0) and D3(BJ) van der Waals (vdW) correction
methods. The recommended values of this parameter with different DFT functionals can be found on the webpage.
The default value of this parameter in ABACUS is set to be the recommended value for PBE.

• Default:
– 1.217: if vdw_method is set to d3_0
– 0.4289: if vdw_method is set to d3_bj

vdw_a2

• Type: Real
• Availability: vdw_method is set to d3_0 or d3_bj
• Description: This damping function parameter is only relevant for D3(0) and D3(BJ) van der Waals (vdW) cor-
rection methods. The recommended values of this parameter with different DFT functionals can be found on the
webpage. The default value of this parameter in ABACUS is set to be the recommended value for PBE.

• Default:
– 1.0: if vdw_method is set to d3_0
– 4.4407: if vdw_method is set to d3_bj

13.1. Full List of INPUT Keywords 164

https://www.chemiebn.uni-bonn.de/pctc/mulliken-center/software/dft-d3/dft-d3
https://www.chemiebn.uni-bonn.de/pctc/mulliken-center/software/dft-d3/dft-d3
https://www.chemiebn.uni-bonn.de/pctc/mulliken-center/software/dft-d3/dft-d3
https://www.chemiebn.uni-bonn.de/pctc/mulliken-center/software/dft-d3/dft-d3

ABACUS

vdw_d

• Type: Real
• Availability: vdw_method is set to d2
• Description: Controls the damping rate of the damping function in the DFT-D2 method.
• Default: 20

vdw_abc

• Type: Integer
• Availability: vdw_method is set to d3_0 or d3_bj
• Description: Determines whether three-body terms are calculated for DFT-D3 methods.

– True: ABACUS will calculate the three-body term.
– False: The three-body term is not included.

• Default: False

vdw_C6_file

• Type: String
• Availability: vdw_method is set to d2
• Description: Specifies the name of the file containing C6 parameters for each element when using the D2 method.
If not set, ABACUS uses the default C6 parameters (Jnm6/mol) stored in the program. To manually set the C6

parameters, provide a file containing the parameters. An example is given by:

H 0.1
Si 9.0

Namely, each line contains the element name and the corresponding C6 parameter.
• Default: default

vdw_C6_unit

• Type: String
• Availability: vdw_C6_file is not default
• Description: Specifies the unit of the provided C6 parameters in the D2 method. Available options are:

– Jnm6/mol (J·nm^6/mol)
– eVA (eV·Angstrom)

• Default: Jnm6/mol

13.1. Full List of INPUT Keywords 165

https://github.com/deepmodeling/abacus-develop/blob/develop/source/module_hamilt_general/module_vdw/vdwd2_parameters.cpp

ABACUS

vdw_R0_file

• Type: String
• Availability: vdw_method is set to d2
• Description: Specifies the name of the file containingR0 parameters for each element when using the D2 method.
If not set, ABACUS uses the default R0 parameters (Angstrom) stored in the program. To manually set the R0

parameters, provide a file containing the parameters. An example is given by:

Li 1.0
Cl 2.0

Namely, each line contains the element name and the corresponding R0 parameter.
• Default: default

vdw_R0_unit

• Type: String
• Availability: vdw_R0_file is not default
• Description: Specifies the unit for the R0 parameters in the D2 method when manually set by the user. Available
options are:

– A (Angstrom)
– Bohr

• Default: A

vdw_cutoff_type

• Type: String
• Description: Determines the method used for specifying the cutoff radius in periodic systems when applying Van
der Waals correction. Available options are:

– radius: The supercell is selected within a sphere centered at the origin with a radius defined by
vdw_cutoff_radius.

– period: The extent of the supercell is explicitly specified using the vdw_cutoff_period keyword.
• Default: radius

vdw_cutoff_radius

• Type: Real
• Availability: vdw_cutoff_type is set to radius
• Description: Defines the radius of the cutoff sphere when vdw_cutoff_type is set to radius. The default
values depend on the chosen vdw_method.

• Default:
– 56.6918 if vdw_method is set to d2
– 95 if vdw_method is set to d3_0 or d3_bj

13.1. Full List of INPUT Keywords 166

https://github.com/deepmodeling/abacus-develop/blob/develop/source/module_hamilt_general/module_vdw/vdwd2_parameters.cpp

ABACUS

• Unit: defined by vdw_radius_unit (default Bohr)

vdw_radius_unit

• Type: String
• Availability: vdw_cutoff_type is set to radius
• Description: specify the unit of vdw_cutoff_radius. Available options are:

– A(Angstrom)
– Bohr

• Default: Bohr

vdw_cutoff_period

• Type: Integer Integer Integer
• Availability: vdw_cutoff_type is set to period
• Description: The three integers supplied here explicitly specify the extent of the supercell in the directions of the
three basis lattice vectors.

• Default: 3 3 3

vdw_cn_thr

• Type: Real
• Availability: vdw_method is set to d3_0 or d3_bj
• Description: The cutoff radius when calculating coordination numbers.
• Default: 40
• Unit: defined by vdw_cn_thr_unit (default: Bohr)

vdw_cn_thr_unit

• Type: String
• Description: Unit of the coordination number cutoff (vdw_cn_thr). Available options are:

– A(Angstrom)
– Bohr

• Default: Bohr
back to top

13.1. Full List of INPUT Keywords 167

ABACUS

13.1.19 Berry phase and wannier90 interface

These variables are used to control berry phase and wannier90 interface parameters. Detail introduce

berry_phase

• Type: Boolean
• Description: controls the calculation of Berry phase

– true: Calculate Berry phase.
– false: Do not calculate Berry phase.

• Default: false

gdir

• Type: Integer
• Description: the direction of the polarization in the lattice vector for Berry phase calculation

– 1: Calculate the polarization in the direction of the lattice vector a_1 defined in the STRU file.
– 2: Calculate the polarization in the direction of the lattice vector a_2 defined in the STRU file.
– 3: Calculate the polarization in the direction of the lattice vector a_3 defined in the STRU file.

• Default: 3

towannier90

• Type: Integer
• Description: Controls the generation of files for the Wannier90 code.

– 1: Generate files for the Wannier90 code.
– 0: Do not generate files for the Wannier90 code.

• Default: 0

nnkpfile

• Type: String
• Description: the file name generated when running “wannier90 -pp …” command
• Default: seedname.nnkp

13.1. Full List of INPUT Keywords 168

https://github.com/deepmodeling/abacus-develop/blob/develop/docs/advanced/interface/Wannier90.md#wannier90

ABACUS

wannier_method

• Type: Integer
• Description: Only available on LCAO basis, using different methods to generate “*.mmn” file and “*.amn” file.

– 1: Calculated using the lcao_in_pw method, the calculation accuracy can be improved by increasing
ecutwfc to maintain consistency with the pw basis set results.

– 2: The overlap between atomic orbitals is calculated using grid integration. The radial grid points are gen-
erated using the Gauss-Legendre method, while the spherical grid points are generated using the Lebedev-
Laikov method.

• Default: 1

wannier_spin

• Type: String
• Description: the spin direction for the Wannier function calculation when nspin is set to 2

– up: Calculate spin up for the Wannier function.
– down: Calculate spin down for the Wannier function.

• Default: up

out_wannier_mmn

• Type: Bool
• Description: write the “*.mmn” file or not.

– 0: don’t write the “*.mmn” file.
– 1: write the “*.mmn” file.

• Default: 1

out_wannier_amn

• Type: Bool
• Description: write the “*.amn” file or not.

– 0: don’t write the “*.amn” file.
– 1: write the “*.amn” file.

• Default: 1

13.1. Full List of INPUT Keywords 169

ABACUS

out_wannier_eig

• Type: Bool
• Description: write the “*.eig” file or not.

– 0: don’t write the “*.eig” file.
– 1: write the “*.eig” file.

• Default: 1

out_wannier_unk

• Type: Bool
• Description: write the “UNK.*” file or not.

– 0: don’t write the “UNK.*” file.
– 1: write the “UNK.*” file.

• Default: 0

out_wannier_wvfn_formatted

• Type: Bool
• Description: write the “UNK.*” file in ASCII format or binary format.

– 0: write the “UNK.*” file in binary format.
– 1: write the “UNK.*” file in ASCII format (text file format).

• Default: 1
back to top

13.1.20 TDDFT: time dependent density functional theory

td_edm

• Type: Integer
• Description: the method to calculate the energy density matrix

– 0: new method (use the original formula).
– 1: old method (use the formula for ground state).

• Default: 0

13.1. Full List of INPUT Keywords 170

ABACUS

td_print_eij

• Type: Real
• Description:

– <0: don’t print Eij .
– >=0: print the Eij (< ψi|H|ψj >) elements which are larger than td_print_eij.

• Default: -1

td_propagator

• Type: Integer
• Description: method of propagator

– 0: Crank-Nicolson.
– 1: 4th Taylor expansions of exponential.
– 2: enforced time-reversal symmetry (ETRS).

• Default: 0

td_vext

• Type: Boolean
• Description:

– True: add a laser material interaction (extern laser field).
– False: no extern laser field.

• Default: False

td_vext_dire

• Type: String
• Description: If td_vext is True, the td_vext_dire is a string to set the number of electric fields, like
td_vext_dire 1 2 representing external electric field is added to the x and y axis at the same time. Pa-
rameters of electric field can also be written as a string, like td_gauss_phase 0 1.5707963267948966
representing the Gauss field in the x and y directions has a phase delay of Pi/2. See below for more parameters of
electric field.

– 1: the direction of external light field is along x axis.
– 2: the direction of external light field is along y axis.
– 3: the direction of external light field is along z axis.

• Default: 1

13.1. Full List of INPUT Keywords 171

ABACUS

td_stype

• Type: Integer
• Description: type of electric field in space domain

– 0: length gauge.
– 1: velocity gauge.

• Default: 0

td_ttype

• Type: Integer
• Description: type of electric field in time domain

– 0: Gaussian type function.
– 1: Trapezoid function.
– 2: Trigonometric function.
– 3: Heaviside function.
– 4: HHG function.

• Default: 0

td_tstart

• Type: Integer
• Description: number of steps where electric field starts
• Default: 1

td_tend

• Type: Integer
• Description: number of steps where electric field ends
• Default: 100

td_lcut1

• Type: Real
• Description: cut1 of interval in length gauge
E = E0 , cut1<x<cut2
E = -E0/(cut1+1-cut2) , x<cut1 or cut2<x<1

• Default: 0.05

13.1. Full List of INPUT Keywords 172

ABACUS

td_lcut2

• Type: Real
• Description: cut2 of interval in length gauge
E = E0 , cut1<x<cut2
E = -E0/(cut1+1-cut2) , x<cut1 or cut2<x<1

• Default: 0.05

td_gauss_freq

• Type: Real
• Description: frequency (freq) of Gauss type electric field (fs^-1)
amp*cos(2pi*freq(t-t0)+phase)exp(-(t-t0)^2/2sigma^2)

• Default: 22.13

td_gauss_phase

• Type: Real
• Description: phase of Gauss type electric field
amp*(2pi*freq(t-t0)+phase)exp(-(t-t0)^2/2sigma^2)

• Default: 0.0

td_gauss_sigma

• Type: Real
• Description: sigma of Gauss type electric field (fs)
amp*cos(2pi*freq(t-t0)+phase)exp(-(t-t0)^2/2sigma^2)

• Default: 30.0

td_gauss_t0

• Type: Real
• Description: step number of time center (t0) of Gauss type electric field
amp*cos(2pi*freq(t-t0)+phase)exp(-(t-t0)^2/2sigma^2)

• Default: 100

13.1. Full List of INPUT Keywords 173

ABACUS

td_gauss_amp

• Type: Real
• Description: amplitude (amp) of Gauss type electric field (V/Angstrom)
amp*cos(2pi*freq(t-t0)+phase)exp(-(t-t0)^2/2sigma^2)

• Default: 0.25

td_trape_freq

• Type: Real
• Description: frequency (freq) of Trapezoid type electric field (fs^-1)
E = amp*cos(2pi*freq*t+phase) t/t1 , t<t1
E = amp*cos(2pi*freq*t+phase) , t1<t<t2
E = amp*cos(2pi*freq*t+phase) (1-(t-t2)/(t3-t2)) , t2<t<t3
E = 0 , t>t3

• Default: 1.60

td_trape_phase

• Type: Real
• Description: phase of Trapezoid type electric field
E = amp*cos(2pi*freq*t+phase) t/t1 , t<t1
E = amp*cos(2pi*freq*t+phase) , t1<t<t2
E = amp*cos(2pi*freq*t+phase) (1-(t-t2)/(t3-t2)) , t2<t<t3
E = 0 , t>t3

• Default: 0.0

td_trape_t1

• Type: Real
• Description: step number of time interval 1 (t1) of Trapezoid type electric field
E = amp*cos(2pi*freq*t+phase) t/t1 , t<t1
E = amp*cos(2pi*freq*t+phase) , t1<t<t2
E = amp*cos(2pi*freq*t+phase) (1-(t-t2)/(t3-t2)) , t2<t<t3
E = 0 , t>t3

• Default: 1875

td_trape_t2

• Type: Real
• Description: step number of time interval 2 (t2) of Trapezoid type electric field
E = amp*cos(2pi*freq*t+phase) t/t1 , t<t1
E = amp*cos(2pi*freq*t+phase) , t1<t<t2
E = amp*cos(2pi*freq*t+phase) (1-(t-t2)/(t3-t2)) , t2<t<t3
E = 0 , t>t3

• Default: 5625

13.1. Full List of INPUT Keywords 174

ABACUS

td_trape_t3

• Type: Real
• Description: step number of time interval 3 (t3) of Trapezoid type electric field
E = amp*cos(2pi*freq*t+phase) t/t1 , t<t1
E = amp*cos(2pi*freq*t+phase) , t1<t<t2
E = amp*cos(2pi*freq*t+phase) (1-(t-t2)/(t3-t2)) , t2<t<t3
E = 0 , t>t3

• Default: 7500

td_trape_amp

• Type: Real
• Description: amplitude (amp) of Trapezoid type electric field (V/Angstrom)
E = amp*cos(2pi*freq*t+phase) t/t1 , t<t1
E = amp*cos(2pi*freq*t+phase) , t1<t<t2
E = amp*cos(2pi*freq*t+phase) (1-(t-t2)/(t3-t2)) , t2<t<t3
E = 0 , t>t3

• Default: 2.74

td_trigo_freq1

• Type: Real
• Description: frequency 1 (freq1) of Trigonometric type electric field (fs^-1)
amp*cos(2*pi*freq1*t+phase1)*sin(2*pi*freq2*t+phase2)^2

• Default: 1.164656

td_trigo_freq2

• Type: Real
• Description: frequency 2 (freq2) of Trigonometric type electric field (fs^-1)
amp*cos(2*pi*freq1*t+phase1)*sin(2*pi*freq2*t+phase2)^2

• Default: 0.029116

td_trigo_phase1

• Type:Real
• Description: phase 1 (phase1) of Trigonometric type electric field
amp*cos(2*pi*freq1*t+phase1)*sin(2*pi*freq2*t+phase2)^2

• Default: 0.0

13.1. Full List of INPUT Keywords 175

ABACUS

td_trigo_phase2

• Type: Real
• Description: phase 2 (phase2) of Trigonometric type electric field
amp*cos(2*pi*freq1*t+phase1)*sin(2*pi*freq2*t+phase2)^2

• Default: 0.0

td_trigo_amp

• Type: Real
• Description: amplitude (amp) of Trigonometric type electric field (V/Angstrom)
amp*cos(2*pi*freq1*t+phase1)*sin(2*pi*freq2*t+phase2)^2

• Default: 2.74

td_heavi_t0

• Type: Real
• Description: step number of switch time (t0) of Heaviside type electric field
E = amp , t<t0
E = 0.0 , t>t0

• Default: 100

td_heavi_amp

• Type: Real
• Description: amplitude (amp) of Heaviside type electric field (V/Angstrom)
E = amp , t<t0
E = 0.0 , t>t0

• Default: 2.74

out_dipole

• Type: Boolean
• Description:

– True: output dipole.
– False: do not output dipole.

• Default: False

13.1. Full List of INPUT Keywords 176

ABACUS

out_efield

• Type: Boolean
• Description: output TDDFT Efield or not(V/Angstrom)

– True: output efield.
– False: do not output efield.

• Default: False

ocp

• Type: Boolean
• Availability:

– For PW and LCAO codes. if set to 1, occupations of bands will be setting of “ocp_set”.
– For TDDFT in LCAO codes. if set to 1, occupations will be constrained since second ionic step.
– For OFDFT, this feature can’t be used.

• Description:
• True: fix the occupations of bands.
• False: do not fix the occupations of bands.
• Default: False

ocp_set

• Type: String
• Description: If ocp is True, the ocp_set is a string to set the number of occupancy, like ‘1 10 * 1 0 1’ representing
the 13 band occupancy, 12th band occupancy 0 and the rest 1, the code is parsing this string into an array through
a regular expression.

• Default: none
back to top

13.1.21 Variables useful for debugging

t_in_h

• Type: Boolean
• Description: Specify whether to include kinetic term in obtaining the Hamiltonian matrix.

– 0: No.
– 1: Yes.

• Default: 1

13.1. Full List of INPUT Keywords 177

ABACUS

vl_in_h

• Type: Boolean
• Description: Specify whether to include local pseudopotential term in obtaining the Hamiltonian matrix.

– 0: No.
– 1: Yes.

• Default: 1

vnl_in_h

• Type: Boolean
• Description: Specify whether to include non-local pseudopotential term in obtaining the Hamiltonian matrix.

– 0: No.
– 1: Yes.

• Default: 1

vh_in_h

• Type: Boolean
• Description: Specify whether to include Hartree potential term in obtaining the Hamiltonian matrix.

– 0: No.
– 1: Yes.

• Default: 1

vion_in_h

• Type: Boolean
• Description: Specify whether to include local ionic potential term in obtaining the Hamiltonian matrix.

– 0: No.
– 1: Yes.

• Default: 1

test_force

• Type: Boolean
• Description: Specify whether to output the detailed components in forces.

– 0: No.
– 1: Yes.

• Default: 0

13.1. Full List of INPUT Keywords 178

ABACUS

test_stress

• Type: Boolean
• Description: Specify whether to output the detailed components in stress.

– 0: No.
– 1: Yes.

• Default: 0

colour

• Type: Boolean
• Description: Specify whether to set the colorful output in terminal.

– 0: No.
– 1: Yes.

• Default: 0

test_skip_ewald

• Type: Boolean
• Description: Specify whether to skip the calculation of the ewald energy.

– 0: No.
– 1: Yes.

• Default: 0
back to top

13.1.22 Electronic conductivities

Frequency-dependent electronic conductivities can be calculated with Kubo-Greenwood formula [Phys. Rev. B 83,
235120 (2011)].
Onsager coefficients:

Lmn(ω) = (−1)m+n 2πe2h̄2

3m2
eωΩ

×
∑

ijαkW (k)
(

ϵik+ϵjk
2 − µ

)m+n−2

× |⟨Ψik|∇α|Ψjk⟩|2

×[f(ϵik)− f(ϵjk)]δ(ϵjk − ϵik −h̄ω).

They can also be computed by j-j correlation function.

Lmn = 2em+n−2

3Ωh̄ω ℑ[C̃mn(ω)] Guassian smearing: C̃mn =
∫∞
0
Cmn(t)e

−iωte−
1
2 s

2t2dt Lorentzian smearing: C̃mn =∫∞
0
Cmn(t)e

−iωte−γtdt

Cmn(t) = −2θ(t)ℑ
{
Tr

[√
f̂ ĵm(1− f̂)ei

Ĥ
h̄ tĵne

−i Ĥ
h̄ t

√
f̂

]}
,

where j1 is electric flux and j2 is thermal flux.

13.1. Full List of INPUT Keywords 179

ABACUS

Frequency-dependent electric conductivities: σ(ω) = L11(ω).

Frequency-dependent thermal conductivities: κ(ω) = 1
e2T

(
L22 − L2

12

L11

)
.

DC electric conductivities: σ = limω→0 σ(ω).
Thermal conductivities: κ = limω→0 κ(ω).

cal_cond

• Type: Boolean
• Availability: basis_type = pw
• Description: Whether to calculate electronic conductivities.
• Default: False

cond_che_thr

• Type: Real
• Availability: esolver_type = sdft
• Description: Control the error of Chebyshev expansions for conductivities.
• Default: 1e-8

cond_dw

• Type: Real
• Availability: basis_type = pw
• Description: Frequency interval (dω) for frequency-dependent conductivities.
• Default: 0.1
• Unit: eV

cond_wcut

• Type: Real
• Availability: basis_type = pw
• Description: Cutoff frequency for frequency-dependent conductivities.
• Default: 10.0
• Unit: eV

13.1. Full List of INPUT Keywords 180

ABACUS

cond_dt

• Type: Real
• Availability: basis_type = pw
• Description: Time interval (dt) to integrate Onsager coefficients.
• Default: 0.02
• Unit: a.u.

cond_dtbatch

• Type: Integer
• Availability: esolver_type = sdft
• Description: exp(iH*dt*cond_dtbatch) is expanded with Chebyshev expansion to calculate conductivities. It is
faster but costs more memory.

– If cond_dtbatch = 0: Autoset this parameter to make expansion orders larger than 100.
• Default: 0

cond_smear

• Type: Integer
• Description: Smearing method for conductivities

– 1: Gaussian smearing
– 2: Lorentzian smearing

• Default: 1

cond_fwhm

• Type: Real
• Availability: basis_type = pw
• Description: FWHM for conductivities. For Gaussian smearing, FWHM = 2

√
2 ln 2s; for Lorentzian smearing,

FWHM = 2γ.
• Default: 0.4
• Unit: eV

13.1. Full List of INPUT Keywords 181

ABACUS

cond_nonlocal

• Type: Boolean
• Availability: basis_type = pw
• Description: Whether to consider nonlocal potential correction when calculating velocity matrix ψiv̂ψj .

– True: mv̂ = p̂+ im
h̄ [V̂NL, r̂].

– False: mv̂ ≈ p̂.
• Default: True

back to top

13.1.23 Implicit solvation model

These variables are used to control the usage of implicit solvation model. This approach treats the solvent as a continuous
medium instead of individual “explicit” solvent molecules, which means that the solute is embedded in an implicit solvent
and the average over the solvent degrees of freedom becomes implicit in the properties of the solvent bath.

imp_sol

• Type: Boolean
• Description: calculate implicit solvation correction
• Default: False

eb_k

• Type: Real
• Availability: imp_sol is true.
• Description: the relative permittivity of the bulk solvent, 80 for water
• Default: 80

tau

• Type: Real
• Description: The effective surface tension parameter that describes the cavitation, the dispersion, and the repulsion
interaction between the solute and the solvent which are not captured by the electrostatic terms

• Default: 1.0798e-05
• Unit: Ry/Bohr2

13.1. Full List of INPUT Keywords 182

ABACUS

sigma_k

• Type: Real
• Description: the width of the diffuse cavity that is implicitly determined by the electronic structure of the solute
• Default: 0.6

nc_k

• Type: Real
• Description: the value of the electron density at which the dielectric cavity forms
• Default: 0.00037
• Unit: Bohr−3

back to top

13.1.24 Deltaspin

These variables are used to control the usage of deltaspin functionality.

sc_mag_switch

• Type: boolean
• Description: the switch of deltaspin functionality

– 0: no deltaspin
– 1: use the deltaspin method to constrain atomic magnetic moments

• Default: 0

decay_grad_switch

• Type: boolean
• Description: the switch of decay gradient method

– 0: no decay gradient method
– 1: use the decay gradient method and set ScDecayGrad in the file specified by sc_file. ScDecayGrad
is an element dependent parameter, which is used to control the decay rate of the gradient of the magnetic
moment.

• Default: 0

13.1. Full List of INPUT Keywords 183

ABACUS

sc_thr

• Type: Real
• Description: the threshold of the spin constraint atomic magnetic moment
• Default: 1e-6
• Unit: Bohr Mag (\muB)

nsc

• Type: Integer
• Description: the maximum number of steps in the inner lambda loop
• Default: 100

nsc_min

• Type: Integer
• Description: the minimum number of steps in the inner lambda loop
• Default: 2

sc_scf_nmin

• Type: Integer
• Description: the minimum number of outer scf loop before initializing lambda loop
• Default: 2

alpha_trial

• Type: Real
• Description: initial trial step size for lambda in eV/uB^2
• Default: 0.01
• Unit: eV/uB^2

sccut

• Type: Real
• Description: restriction of step size in eV/uB
• Default: 3
• Unit: eV/uB

13.1. Full List of INPUT Keywords 184

ABACUS

sc_file

• Type: String
• Description: the file in json format to specify atomic constraining parameters. An example of the sc_file json file
is shown below for the nspin 4 case:

[
{

"element": "Fe",
"itype": 0,
"ScDecayGrad": 0.9,
"ScAtomData": [

{
"index": 0,
"lambda": [0, 0, 0],
"target_mag": [2.0, 0.0, 0.0],
"constrain": [1,1,1]

},
{

"index": 1,
"lambda": [0, 0, 0],
"target_mag_val": 2.0,
"target_mag_angle1": 80.0,
"target_mag_angle2": 0.0,
"constrain": [1,1,1]

}
]

}
]

and

[
{

"element": "Fe",
"itype": 0,
"ScDecayGrad": 0.9,
"ScAtomData": [

{
"index": 0,
"lambda": 0.0,
"target_mag": 2.0,
"constrain": 1

},
{

"index": 1,
"lambda": 0,
"target_mag": 2.0,
"constrain": 1

}
]

}
]

for nspin 2 case. The difference is that lambda, target_mag, and constrain are scalars in nspin 2 case,
and are vectors in nspin 4 case.

• Default: none

13.1. Full List of INPUT Keywords 185

ABACUS

back to top

13.1.25 Quasiatomic Orbital (QO) analysis

These variables are used to control the usage of QO analysis. QO further compress information from LCAO: usually PW
basis has dimension in million, LCAO basis has dimension below thousand, and QO basis has dimension below hundred.

qo_switch

• Type: Boolean
• Description: whether to let ABACUS output QO analysis required files
• Default: 0

qo_basis

• Type: String
• Description: specify the type of atomic basis

– pswfc: use the pseudowavefunction in pseudopotential files as atomic basis. To use this option, please make
sure in pseudopotential file there is pswfc in it.

– hydrogen: generate hydrogen-like atomic basis (or with Slater screening).
– szv: use the first set of zeta for each angular momentum from numerical atomic orbitals as atomic basis.

warning: to use pswfc , please use norm-conserving pseudopotentials with pseudowavefunctions, SG15 pseudopo-
tentials cannot support this option. Developer notes: for ABACUS-lcao calculation, it is the most recommend to use
szv instead of pswfcwhich is originally put forward in work of QO implementation on PW basis. The information
loss always happens if pswfc or hydrogen orbitals are not well tuned, although making kpoints sampling more
dense will mitigate this problem, but orbital-adjust parameters are needed to test system-by-system in this case.

• Default: szv

qo_strategy

• Type: String [String…](optional)
• Description: specify the strategy to generate radial orbitals for each atom type. If one parameter is given, will apply
to all atom types. If more than one parameters are given but fewer than number of atom type, those unspecified
atom type will use default value.
For qo_basis hydrogen

– minimal-nodeless: according to principle quantum number of the highest occupied state, generate
only nodeless orbitals, for example Cu, only generate 1s, 2p, 3d and 4f orbitals (for Cu, 4s is occupied, thus
nmax = 4)

– minimal-valence: according to principle quantum number of the highest occupied state, generate only
orbitals with highest principle quantum number, for example Cu, only generate 4s, 4p, 4d and 4f orbitals.

– full: similarly according to the maximal principle quantum number, generate all possible orbitals, therefore
for Cu, for example, will generate 1s, 2s, 2p, 3s, 3p, 3d, 4s, 4p, 4d, 4f.

– energy-full: will generate hydrogen-like orbitals according to Aufbau principle. For example the Cu
(1s2 2s2 2p6 3s2 3p6 3d10 4s1), will generate these orbitals.

13.1. Full List of INPUT Keywords 186

ABACUS

– energy-valence: from the highest n (principal quantum number) layer and n-1 layer, generate all occu-
pied and possible ls (angular momentum quantum number) for only once, for example Cu, will generate 4s,
3d and 3p orbitals.

For qo_basis pswfc and qo_basis szv

– all: use all possible pseudowavefunctions/numerical atomic orbital (of first zeta) in pseudopoten-
tial/numerical atomic orbital file.

– s/p/d/…: only use s/p/d/f/…-orbital(s).
– spd: use s, p and d orbital(s). Any unordered combination is acceptable.

warning: for qo_basis hydrogen to use full, generation strategy may cause the space spanned larger than
the one spanned by numerical atomic orbitals, in this case, must filter out orbitals in some way

• Default: for hydrogen: energy-valence, for pswfc and szv: all

qo_screening_coeff

• Type: Real [Real…](optional)
• Description: rescale the shape of radial orbitals, available for both qo_basis hydrogen and qo_basis
pswfc. cases but has different meaning.
For qo_basis pswfc
For each atom type, screening factor e−η|r| is multiplied to the pswfc to mimic the behavior of some kind of
electron. η is the screening coefficient. If only one value is given, then will apply to each atom type. If not enough
values are given, will apply default value to rest of atom types. This parameter plays important role in controlling
the spread of QO orbitals together with qo_thr.
For qo_basis hydrogen
If any float number is given, will apply Slater screening to all atom types. Slater screening is a classic and empir-
ical method roughly taking many-electron effect into account for obtaining more accurate results when evaluating
electron affinity and ionization energy. The Coulomb potential then becomes V (r) = −Z−σ

r . For example the
effective nuclear charge for Cu 3d electrons now reduces from 29 to 7.85, 4s from 29 to 3.70, which means Slater
screening will bring about longer tailing effect. If no value is given, will not apply Slater screening.

• Default: 0.1
• Unit: Bohr^-1

qo_thr

• Type: Real
• Description: the convergence threshold determining the cutoff of generated orbital. Lower threshold will yield
orbital with larger cutoff radius.

• Default: 1.0e-6
back to top

13.1. Full List of INPUT Keywords 187

ABACUS

13.2 The STRU file

• Examples

– no latname

– latname fcc

• Structure of the file

– ATOMIC_SPECIES

– NUMERICAL_ORBITAL

– LATTICE_CONSTANT

– LATTICE_VECTORS

– LATTICE_PARAMETERS

– ATOMIC_POSITIONS

– More Key Words

13.2.1 Examples

The STRU file contains the information about the lattice geometry, the name(s) and/or location(s) of the pseudopotential
and numerical orbital files, as well as the structural information about the system. We supply two ways of specifying the
lattice geometry. Below are two examples of the STRU file for the same system:

No latname

For this example, no need to supply any input to the variable latname in the INPUT file. (See input parameters.)

ATOMIC_SPECIES
Si 28.00 Si_ONCV_PBE-1.0.upf upf201 // label; mass; pseudo_file; pseudo_type

NUMERICAL_ORBITAL
Si_gga_8au_60Ry_2s2p1d.orb //numerical_orbital_file

LATTICE_CONSTANT
10.2 // lattice scaling factor (Bohr)

LATTICE_VECTORS
0.5 0.5 0.0 // latvec1
0.5 0.0 0.5 // latvec2
0.0 0.5 0.5 // latvec3

ATOMIC_POSITIONS
Direct //Cartesian or Direct coordinate.
Si // Element type
0.0 // magnetism(Be careful: value 1.0 refers to 1.0 bohr mag, but not fully spin up !
↪→!!)
2 // number of atoms
0.00 0.00 0.00 0 0 0
0.25 0.25 0.25 1 1 1

13.2. The STRU file 188

ABACUS

latname fcc

We see that this example is a silicon fcc lattice. Apart from setting the lattice vectors manually, we also provide another
solution where only the Bravais lattice type is required, and the lattice vectors will be generated automatically. For this
example, we need to set latname="fcc" in the INPUT file. (See input parameters.) And the STRU file becomes:

ATOMIC_SPECIES
Si 28.00 Si_ONCV_PBE-1.0.upf // label; mass; pseudo_file

NUMERICAL_ORBITAL
Si_gga_8au_60Ry_2s2p1d.orb //numerical_orbital_file

LATTICE_CONSTANT
10.2 // lattice scaling factor (Bohr)

ATOMIC_POSITIONS
Direct //Cartesian or Direct coordinate.
Si // Element type
0.0 // magnetism
2 // number of atoms
0.00 0.00 0.00 0 0 0//the position of atoms and other parameter specify by key word
0.25 0.25 0.25 1 1 1

The LATTICE_VECTORS section is removed.

13.2.2 Structure of the file

The STRU file contains several sections, and each section must start with a keyword like ATOMIC_SPECIES, NUMER-
ICAL_ORBITAL, or LATTICE_CONSTANT, etc. to signify what type of information that comes below.

ATOMIC_SPECIES

This section provides information about the type of chemical elements contained the unit cell. Each line defines one type
of element. The user should specify the name, the mass, and the pseudopotential file used for each element. The mass
of the elment is only used in molecular dynamics simulations. For electronic-structure calculations, the actual mass value
isn’t important. In the above example, we see information is provided for the element Si:

Si 28.00 Si_ONCV_PBE-1.0.upf upf201 // label; mass; pseudo_file; pseudo_type

Here Si_ONCV_PBE-1.0.upf is the pseudopotential file. When the path is not specified, the file is assumed to be
located in work directory. Otherwise, please explicitly specify the location of the pseudopotential files.
After the pseudopotential file, upf201 is the type of pseudopotential. There are five options: upf(.UPF format),
upf201(the new .UPF format), vwr(.vwr format), blps(bulk-derived local pseudopotential), and auto(automatically
identified). If no pseudopotential type is assigned, the default value is auto, and the pseudopotential type will be auto-
matically identified.
When esolver_type is set to lj or dp, the keyword pseudo_file and pseudo_type is needless.
Different types of pseudopotentials can be used for different elements, but note that the XC functionals assigned by all
pseudopotentials should be the same one. If not, the choice of XC functional must be set explicitly using the dft_functional
keyword.
Common sources of the pseudopotential files include:

1. Quantum ESPRESSO.

13.2. The STRU file 189

http://www.quantum-espresso.org/pseudopotentials/

ABACUS

2. SG15-ONCV.
3. DOJO.
4. BLPS.

NUMERICAL_ORBITAL

Numerical atomic orbitals are only needed for LCAO calculations. Thus this section will be neglected in calcultions with
plane wave basis. In the above example, numerical atomic orbitals is specified for the element Si:

Si_gga_8au_60Ry_2s2p1d.orb //numerical_orbital_file

‘Si_gga_8au_60Ry_2s2p1d.orb’ is name of the numerical orbital file. Again here the path is not specified, which means
that this file is located in the work directory.
Numerical atomic orbitals may be downloaded from the official website.

LATTICE_CONSTANT

The lattice constant of the system in unit of Bohr.

LATTICE_VECTORS

The lattice vectors of the unit cell. It is a 3by3 matrix written in 3 lines. Please note that the lattice vectors given here
are scaled by the lattice constant. This section must be removed if the type Bravais lattice is specified using the input
parameter latname. (See input parameters.)

LATTICE_PARAMETERS

This section is only relevant when latname (see input parameters) is used to specify the Bravais lattice type. The
example above is a fcc lattice, where no additional information except the lattice constant is required to determine the
geometry of the lattice.
However, for other types of Bravais lattice, other parameters might be necessary. In that case, the section LAT-
TICE_PARAMETERS must be present. It contains one single line with some parameters (separated by blank space
if multiple parameters are needed), where the number of parameters required depends on specific type of lattice.
The three lattice vectors v1, v2, v3 (in units of lattice constant) are generated in the following way:

• latname = “sc”: the LATTICE_PARAMETERS section is not required:

v1 = (1, 0, 0)
v2 = (0, 1, 0)
v3 = (0, 0, 1)

• latname = “fcc”: the LATTICE_PARAMETERS section is not required:

v1 = (-0.5, 0, 0.5)
v2 = (0, 0.5, 0.5)
v3 = (-0.5, 0.5, 0)

• latname = “bcc” : the LATTICE_PARAMETERS section is not required:

13.2. The STRU file 190

http://quantum-simulation.org/potentials/sg15_oncv/upf/
http://www.pseudo-dojo.org/
https://github.com/PrincetonUniversity/BLPSLibrary
http://abacus.ustc.edu.cn/pseudo/list.htm

ABACUS

v1 = (0.5, 0.5, 0.5)
v2 = (-0.5, 0.5, 0.5)
v3 = (-0.5, -0.5, 0.5)

• latname = “hexagonal” : One single parameter is required in the LATTICE_PARAMETERS section, being the
ratio between axis length c/a. Denote it by x then:

v1 = (1.0, 0, 0)
v2 = (-0.5, sqrt(3)/2, 0)
v3 = (0, 0, x)

• latname = “trigonal” : One single parameter is required in the LATTICE_PARAMETERS section, which specifies
cosγ with γ being the angle between any pair of crystallographic vectors. Denote it by x then:

v1 = (tx, -ty, tz)
v2 = (0, 2ty, tz)
v3 = (-tx, -ty, tz)

where tx=sqrt((1-x)/2), ty=sqrt((1-x)/6), and tz=sqrt((1+2x)/3).
• latname = “st” (simple tetragonal) : One single parameter is required in the LATTICE_PARAMETERS section,
which gives ratio between axis length c/a. Denote it by x then:

v1 = (1, 0, 0)
v2 = (0, 1, 0)
v3 = (0, 0, x)

• latname = “bct” (body-centered tetragonal) : One single parameter is required in the LATTICE_PARAMETERS
section, which gives ratio between axis length c/a. Denote it by x then:

v1 = (0.5, -0.5, x)
v2 = (0.5, 0.5, x)
v3 = (-0.5, -0.5, x)

• latname = “so” (simple orthorhombic) : Two parameters are required in the LATTICE_PARAMETERS section,
which gives ratios between axis length b/a and c/a. Denote them by x, y then:

v1 = (1, 0, 0)
v2 = (0, x, 0)
v3 = (0, 0, y)

• latname = “baco” (base-centered orthorhombic) : Two parameters are required in the LATTICE_PARAMETERS
section, which gives ratios between axis length b/a and c/a. Denote them by x, y then:

v1 = (0.5, x/2, 0)
v2 = (-0.5, x/2, 0)
v3 = (0, 0, y)

• latname = “fco” (face-centered orthorhombic) : Two parameters are required in the LATTICE_PARAMETERS
section, which gives ratios between axis length b/a and c/a. Denote them by x, y then:

v1 = (0.5, 0, y/2)
v2 = (0.5, x/2, 0)
v3 = (0, x/2, y/2)

• latname = “bco” (body-centered orthorhombic) : Two parameters are required in the LATTICE_PARAMETERS
section, which gives ratios between lattice vector length b/a and c/a. Denote them by x, y then:

13.2. The STRU file 191

ABACUS

v1 = (0.5, x/2, y/2)
v2 = (-0.5, x/2, y/2)
v3 = (-0.5, -x/2, y/2)

• latname = “sm” (simple monoclinic) : Three parameters are required in the LATTICE_PARAMETERS section,
which are the ratios of lattice vector length b/a, c/a as well as the cosine of angle between axis a and b. Denote
them by x, y, z then:

v1 = (1, 0, 0)
v2 = (x*z, x*sqrt(1-z^2, 0)
v3 = (0, 0, y)

• latname = “bacm” (base-centered monoclinic) : Three parameters are required in the LATTICE_PARAMETERS
section, which are the ratios of lattice vector length b/a, c/a as well as the cosine of angle between axis a and b.
Denote them by x, y, z then:

v1 = (0.5, 0, -y/2)
v2 = (x*z, x*sqrt(1-z^2), 0)
v3 = (0.5, 0, y/2)

• latname = “triclinic” : Five parameters are required in the LATTICE_PARAMETERS section, namely the ratios
b/a, c/a; the cosines of angle ab, ac, bc. Denote them by x,y,m,n,l, then:

v1 = (1, 0, 0)
v2 = (x*m, x*sqrt(1-m^2), 0)
v3 = (y*n, y*(l-n*m/sqrt(1-m^2)), y*fac)

where fac =
√
1+2∗m∗n∗l−m2−n2−l2√

1−m2

ATOMIC_POSITIONS

This section specifies the positions and other information of individual atoms.
The first line signifies method that atom positions are given, the following options are supported:

• Direct : coordinates of atom positions below would in fraction coordinates.
• Cartesian : Cartesian coordinates in unit of ‘LATTICE_CONSTANT’.
• Cartesian_au : Cartesian coordinates in unit of Bohr, same as setting of Cartesian with LAT-
TICE_CONSTANT = 1.0 .

• Cartesian_angstrom : Cartesian coordinates in unit of Angstrom, same as setting of Cartesian with
LATTICE_CONSTANT = 1.889726125457828 .

• Cartesian_angstrom_center_xy : Cartesian coordinates in unit of Angstrom, with Direct coordinate
(0.5, 0.5, 0.0) as reference.

• Cartesian_angstrom_center_xz : Cartesian coordinates in unit of Angstrom, with Direct coordinate
(0.5, 0.0, 0.5) as reference…

• Cartesian_angstrom_center_yz : Cartesian coordinates in unit of Angstrom, with Direct coordinate
(0.0, 0.5, 0.5) as reference…

• Cartesian_angstrom_center_xyz : Cartesian coordinates in unit of Angstrom, with Direct coordinate
(0.5, 0.5, 0.5) as reference…

13.2. The STRU file 192

ABACUS

The following three lines tells the elemental type (Fe), the initial magnetic moment (1.0), and the number of atoms for
this particular element (2) repsectively. Notice this magnetic moment will be a default value for every atom of this type
but will be overrided if one define it for each atom by keyword(see below).
The last two lines in this example are the coordinates of atomic positions. There are three numbers in each line, which
specifies the atomic positions, following by other parameters marked by keywords.

More Key Words

Several other parameters could be defined after the atom position using key words :
• m or NO key word: three numbers, which take value in 0 or 1, control how the atom move in geometry relaxation
calculations. In example below, the numbers 0 0 0 following the coordinates of the first atom means this atom
are not allowed to move in all three directions, and the numbers 1 1 1 following the coordinates of the second
atom means this atom can move in all three directions.

• v orvel orvelocity: set the three components of initial velocity of atoms in geometry relaxation calculations(e.
g. v 1.0 1.0 1.0).

• mag or magmom : set the start magnetization for each atom. In colinear case only one number should be given. In
non-colinear case one have two choice:either set one number for the norm of magnetization here and specify two
polar angle later(e. g. see below), or set three number for the xyz commponent of magnetization here (e. g. mag
0.0 0.0 1.0). Note that if this parameter is set, the initial magnetic moment setting in the second line will be
overrided.

– angle1: in non-colinear case, specify the angle between c-axis and real spin, in angle measure instead of
radian measure

– angle2: in non-colinear case, specify angle between a-axis and real spin in projection in ab-plane , in angle
measure instead of radian measure
e.g.:

Fe
1.0
2
0.0 0.0 0.0 m 0 0 0 mag 1.0 angle1 90 angle2 0
0.5 0.5 0.5 m 1 1 1 mag 1.0 angle1 90 angle2 180

– Default: If users do not specalize a finite magnetic moment for all atoms in a magnetic calculations
(nspin==2 || nspin == 4), e.g.:

Fe
0.0
2
0.0 0.0 0.0 m 0 0 0
0.5 0.5 0.5 m 1 1 1

O
0.0
2
0.0 0.0 0.0 m 0 0 0
0.5 0.5 0.5 m 1 1 1

For nspin==2, we will autoset atomic magmon is 1.0:

Fe
1.0

(continues on next page)

13.2. The STRU file 193

ABACUS

(continued from previous page)
2
0.0 0.0 0.0 m 0 0 0
0.5 0.5 0.5 m 1 1 1

Fe
1.0
2
0.0 0.0 0.0 m 0 0 0
0.5 0.5 0.5 m 1 1 1

For nspin==4, we will autoset atomic magmon as follow:

Fe
0.0
2
0.0 0.0 0.0 m 0 0 0 mag 1 1 1
0.5 0.5 0.5 m 1 1 1 mag 1 1 1

O
0.0
2
0.0 0.0 0.0 m 0 0 0 mag 1 1 1
0.5 0.5 0.5 m 1 1 1 mag 1 1 1

However, this autoset will not be vaild once STRU specalize a finite magnetic for any single atom.

13.3 The KPT file

• Generate k-mesh automatically

• Set k-points explicitly

• Band structure calculations

ABACUS uses periodic boundary conditions for both crystals and finite systems. For isolated systems, such as atoms,
molecules, clusters, etc., one uses the so-called supercell model. Lattice vectors of the supercell are set in the STRU file.
For the input k-point (KPT) file, the file should either contain the k-point coordinates and weights or the mesh size for
creating the k-point gird. Both options are allowed in ABACUS.

13.3.1 Gamma-only Calculations

In ABACUS, we offer th option of running gamma-only calculations for LCAO basis by setting gamma_only to be 1. Due
to details of implementation, gamma-only calculation will be slightly faster than running a non gamma-only calculation
and explicitly setting gamma point to be the only the k-point, but the results should be consistent.

If gamma_only is set to 1, the KPT file will be overwritten. So make sure to turn off gamma_only for multi-k
calculations.

13.3. The KPT file 194

ABACUS

13.3.2 Generate k-mesh automatically

To generate k-mesh automatically, it requires the input subdivisions of the Brillouin zone in each direction and the origin
for the k-mesh. ABACUS uses the Monkhorst-Pack method to generate k-mesh, and the following is an example input
k-point (KPT) file used in ABACUS.

K_POINTS //keyword for start
0 //total number of k-point, `0' means generate automatically
Gamma //which kind of Monkhorst-Pack method, `Gamma' or `MP'
2 2 2 0 0 0 //first three number: subdivisions along recpri. vectors

//last three number: shift of the mesh

In the above example, the first line is a keyword, and it can be set as K_POINTS, or KPOINTS or just K. The second
line is an integer, and its value determines how to get k-points. In this example, 0 means using Monkhorst-Pack (MP)
method to generate k-points automatically.
The third line tells the input type of k-points, Gamma or MP, different Monkhorst Pack (MP) method. Monkhorst-
Pack (MP) is a method which uses the uniform k-points sampling in Brillouin-zone, while Gamma means the Γ-centered
Monkhorst-Pack method. The first three numbers of the last line are integers, which give the MP k grid dimensions, and
the rest three are real numbers, which give the offset of the k grid. In this example, the numbers 0 0 0means that there
is no offset, and this is the a standard 2by2by2 k grid.
back to top

13.3.3 Set k-points explicitly

If the user wants to set up the k-points explicitly, the input k-point file should contain the k-point coordinates and weights.
An example is given as follows:

K_POINTS //keyword for start
8 //total number of k-point
Direct //`Direct' or `Cartesian' coordinate
0.0 0.0 0.0 0.125 //coordinates and weights
0.5 0.0 0.0 0.125
0.0 0.5 0.0 0.125
0.5 0.5 0.0 0.125
0.0 0.0 0.5 0.125
0.5 0.0 0.5 0.125
0.0 0.5 0.5 0.125
0.5 0.5 0.5 0.125

back to top

13.3.4 Band structure calculations

ABACUS uses specified high-symmetry directions of the Brillouin zone for band structure calculations. The third line
of k-point file should start with ‘Line’ or ‘Line_Cartesian’ for line mode. ‘Line’ means the positions below are in Direct
coordinates, while ‘Line_Cartesian’ means in Cartesian coordinates:

K_POINTS // keyword for start
6 // number of high symmetry lines
Line // line-mode
0.5 0.0 0.5 20 // X
0.0 0.0 0.0 20 // G
0.5 0.5 0.5 20 // L

(continues on next page)

13.3. The KPT file 195

ABACUS

(continued from previous page)
0.5 0.25 0.75 20 // W
0.375 0.375 0.75 20 // K
0.0 0.0 0.0 1 // G

The fourth line and the following are special k-point coordinates and number of k-points between this special k-point and
the next.
back to top

13.3. The KPT file 196

CHAPTER

FOURTEEN

HOW TO CITE

The following references are required to be cited when using ABACUS. Specifically:
• For general purpose:
Mohan Chen, G. C. Guo, and Lixin He. “Systematically improvable optimized atomic basis sets for ab initio
calculations.” Journal of Physics: Condensed Matter 22.44 (2010): 445501.
Pengfei Li, et al. “Large-scale ab initio simulations based on systematically improvable atomic basis.” Computa-
tional Materials Science 112 (2016): 503-517.

• If Stochastic DFT is used:
Qianrui Liu, and Mohan Chen. “Plane-Wave-Based Stochastic-Deterministic Density Functional Theory for Ex-
tended Systems.” https://arxiv.org/abs/2204.05662.

• If DFT+U is used:
Xin Qu, et al. “DFT+ U within the framework of linear combination of numerical atomic orbitals.” The Journal
of Chemical Physics (2022).

• If second generation numerical orbital basis is used:
Peize Lin, Xinguo Ren, and Lixin He. “Strategy for constructing compact numerical atomic orbital basis sets by
incorporating the gradients of reference wavefunctions.” Physical Review B 103.23 (2021): 235131.

• If berry curvature calculation is used in LCAO base:
Gan Jin, Daye Zheng, and Lixin He. “Calculation of Berry curvature using non-orthogonal atomic orbitals.” Journal
of Physics: Condensed Matter 33.32 (2021): 325503.

• If DeePKS is used:
Wenfei Li, Qi Ou, et al. “DeePKS+ABACUS as a Bridge between Expensive Quantum Mechanical Models and
Machine Learning Potentials.” https://arxiv.org/abs/2206.10093.

• If hybrid functional is used:
Peize Lin, Xinguo Ren, and Lixin He. “Efficient Hybrid Density Functional Calculations for Large Periodic Systems
Using Numerical Atomic Orbitals.” Journal of Chemical Theory and Computation 2021, 17(1), 222–239.
Peize Lin, Xinguo Ren, and Lixin He. “Accuracy of Localized Resolution of the Identity in Periodic Hybrid
Functional Calculations with Numerical Atomic Orbitals.” Journal of Physical Chemistry Letters 2020, 11, 3082-
3088.

197

https://arxiv.org/abs/2204.05662
https://arxiv.org/abs/2206.10093

CHAPTER

FIFTEEN

DEVELOPMENT TEAM

The current development team consists the following research groups/affiliations:
• University of Science and Technology of China (Dr. Lixin He)
• Peking University (Dr. Mohan Chen)
• Institute of Physics, Chinese Academy of Sciences (Dr. Xinguo Ren)
• Beijing AI for Science Institute
• Institute of Artificial Intelligence, Hefei Comprehensive National Science Center.

198

CHAPTER

SIXTEEN

ABACUS CONTRIBUTION GUIDE

16.1 Contribution Process

We welcome contributions from the open source community. The technical guide is provided in Contributing to ABACUS.
Here is the basic contribution process:

• Find out issues to work on. We assume you already have a good idea on what to do, otherwise the issue tracker
and discussion panel provide good starting points to find out what to work on and to get familiar with the project.

• Approach the issue. It is suggested to submit new issues before coding out changes to involve more discussions
and suggestions from development team. Refer to the technical guide in Contributing to ABACUS when needed.

• Open a pull request. The ABACUS developers review the pull request (PR) list regularly. If the work is not
ready, convert it to draft until finished, then you can mark it as “Ready for review”. It is suggested to open a new
PR through forking a repo and creating a new branch on you Github account. A new PR should include as much
information as possible in description when submmited. Unittests or CI tests are required for new PRs.

• Iterate the pull request. All pull requests need to be tested through CI before reviewing. A pull request might
need to be iterated several times before accepted, so splitting a long PR into parts reduces reviewing difficulty for
us.

199

https://github.com/deepmodeling/abacus-develop/issues
https://github.com/deepmodeling/abacus-develop/discussions
https://github.com/deepmodeling/abacus-develop/issues/new/choose

CHAPTER

SEVENTEEN

CONTRIBUTING TO ABACUS

First of all, thank you for taking time to make contributions to ABACUS! This file provides the more technical guidelines
on how to realize it. For more non-technical aspects, please refer to the ABACUS Contribution Guide

17.1 Table of Contents

• Got a question?

• Structure of the package

• Submitting an Issue

• Comment style for documentation

• Code formatting style

• Generating code coverage report

• Adding a unit test

• Running unit tests

• Debugging the codes

• Submitting a Pull Request

• Commit message guidelines

17.2 Got a question?

Please referring to our GitHub issue tracker, and our developers are willing to help. If you find a bug, you can help us
by submitting an issue to our GitHub Repository. Even better, you can submit a Pull Request with a patch. You can
request a new feature by submitting an issue to our GitHub Repository. If you would like to implement a new feature,
please submit an issue with a proposal for your work first, and that ensures your work collaborates with our development
road map well. For a major feature, first open an issue and outline your proposal so that it can be discussed. This will
also allow us to better coordinate our efforts, prevent duplication of work, and help you to craft the change so that it is
successfully accepted into the project.

200

https://github.com/deepmodeling/abacus-develop/issues

ABACUS

17.3 Structure of the package

Please refer to our instructions on how to installing ABACUS. The source code of ABACUS is based on several modules.
Under the ABACUS root directory, there are the following folders:

• cmake: relevant files for finding required packages when compiling the code with cmake;
• docs: documents and supplementary info about ABACUS;
• examples: some examples showing the usage of ABACUS;
• source: the source code in separated modules, under which a test folder for its unit tests;
• tests: End-to-end test cases;
• tools: the script for generating the numerical atomic orbitals.

For those who are interested in the source code, the following figure shows the structure of the source code.

|-- module_base A basic module including
| | (1) Mathematical library interface functions: BLAS,␣
↪→LAPACK, Scalapack;
| | (2) Custom data classes: matrix, vector definitions␣
↪→and related functions;
| | (3) Parallelization functions: MPI, OpenMP;
| | (4) Utility functions: timer, random number generator,
↪→ etc.
| | (5) Global parameters: input parameters, element␣
↪→names, mathematical and physical constants.
| |-- module_container The container module for storing data and performing␣
↪→operations on them and on different architectures.
|-- module_basis Basis means the basis set to expand the wave function.
| |-- module_ao Atomic orbital basis set to be refactored.
| |-- module_nao New numerical atomic orbital basis set for two-center␣
↪→integrals in LCAO calculations
| `-- module_pw Data structures and relevant methods for planewave␣
↪→involved calculations
|-- module_cell The module for defining the unit cell and its␣
↪→operations, and reading pseudopotentials.
| |-- module_neighbor The module for finding the neighbors of each atom in␣
↪→the unit cell.
| |-- module_paw The module for performing PAW calculations.
| |-- module_symmetry The module for finding the symmetry operations of the␣
↪→unit cell.
|-- module_elecstate The module for defining the electronic state and its␣
↪→operations.
| |-- module_charge The module for calculating the charge density, charge␣
↪→mixing
| |-- potentials The module for calculating the potentials, including␣
↪→Hartree, exchange-correlation, local pseudopotential, etc.
|-- module_esolver The module defining task-specific driver of␣
↪→corresponding workflow for evaluating energies, forces, etc., including lj, dp, ks,␣
↪→sdft, ofdft, etc.
| | TDDFT, Orbital-free DFT, etc.
|-- module_hamilt_general The module for defining general Hamiltonian that can␣
↪→be used both in PW and LCAO calculations.
| |-- module_ewald The module for calculating the Ewald summation.
| |-- module_surchem The module for calculating the surface charge␣
↪→correction.
| |-- module_vdw The module for calculating the van der Waals␣

(continues on next page)

17.3. Structure of the package 201

ABACUS

(continued from previous page)
↪→correction.
| |-- module_xc The module for calculating the exchange-correlation␣
↪→energy and potential.
|-- module_hamilt_lcao The module for defining the Hamiltonian in LCAO␣
↪→calculations.
| |-- hamilt_lcaodft The module for defining the Hamiltonian in LCAO-DFT␣
↪→calculations.
| | |-- operator_lcao The module for defining the operators in LCAO-DFT␣
↪→calculations.
| |-- module_deepks The module for defining the Hamiltonian in DeepKS␣
↪→calculations.
| |-- module_dftu The module for defining the Hamiltonian in DFT+U␣
↪→calculations.
| |-- module_gint The module for performing grid integral in LCAO␣
↪→calculations.
| |-- module_hcontainer The module for storing the Hamiltonian matrix in LCAO␣
↪→calculations.
| `-- module_tddft The module for defining the Hamiltonian in TDDFT␣
↪→calculations.
|-- module_hamilt_pw The module for defining the Hamiltonian in PW␣
↪→calculations.
| |-- hamilt_ofdft The module for defining the Hamiltonian in OFDFT␣
↪→calculations.
| |-- hamilt_pwdft The module for defining the Hamiltonian in PW-DFT␣
↪→calculations.
| | |-- operator_pw The module for defining the operators in PW-DFT␣
↪→calculations.
| `-- hamilt_stodft The module for defining the Hamiltonian in STODFT␣
↪→calculations.
|-- module_hsolver The module for solving the Hamiltonian with different␣
↪→diagonalization methods, including CG, Davidson in PW
| | calculations, and scalapack and genelpa in LCAO␣
↪→calculations.
|-- module_io The module for reading of INPUT files and output␣
↪→properties including band structure, density of states, charge density, etc.
|-- module_md The module for performing molecular dynamics.
|-- module_psi The module for defining the wave function and its␣
↪→operations.
|-- module_relax The module for performing structural optimization.
| |-- relax_new The module for performing structural optimization␣
↪→with new algorithm, optimized for cell and ion simultaneously.
| `-- relax_old The module for performing structural optimization␣
↪→with old algorithm, optimized for cell and ion separately.
|-- module_ri The module for performing RI calculations.

17.3. Structure of the package 202

ABACUS

17.4 Submitting an Issue

Before you submit an issue, please search the issue tracker, and maybe your problem has been discussed and fixed. You
can submit new issues by filling our issue forms. To help us reproduce and confirm a bug, please provide a test case and
building environment in your issue.

17.5 Comment style for documentation

ABACUS uses Doxygen to generate docs directly from .h and .cpp code files.
For comments that need to be shown in documents, these formats should be used – Javadoc style (as follow) is recom-
mended, though Qt style is also ok. See it in official manual.
A helpful VS Code extension – Doxygen Documentation Generator, can help you formating comments.
An practical example is class LCAO_Deepks, the effects can be seen on readthedocs page

• Tips
– Only comments in .h file will be visible in generated by Doxygen + Sphinx;
– Private class members will not be documented;
– Use Markdown features, such as using a empty new line for a new paragraph.

• Detailed Comment Block

/**
* ... text ...
*/

• Brief + Detailed Comment Block

/// Brief description which ends at this dot. Details follow
/// here.

/// Brief description.
/** Detailed description. */

• Comments After the Item: Add a “<”

int var; /**<Detailed description after the member */
int var; ///<Brief description after the member

• Parameters usage: [in],[out],[in,out] description e.g.

void foo(int v/**< [in] docs for input parameter v.*/);

or use @param command.
• Formula

– inline: \f$myformula\f$
– separate line: \f[myformula\f]
– environment: \f{environment}{myformula}
– e.g.

17.4. Submitting an Issue 203

https://github.com/deepmodeling/abacus-develop/issues/new/choose
https://www.doxygen.nl/manual/docblocks.html
https://marketplace.visualstudio.com/items?itemName=cschlosser.doxdocgen
https://github.com/deepmodeling/abacus-develop/blob/deepks/source/module_hamilt_lcao/module_deepks/LCAO_deepks.h
https://abacus-deepks.readthedocs.io/en/latest/DeePKS_API/classLCAO__Descriptor.html#exhale-class-classLCAO-Descriptor
https://www.doxygen.nl/manual/markdown.html

ABACUS

\f{eqnarray*}{
g &=& \frac{Gm_2}{r^2} \\
&=& \frac{(6.673 \times 10^{-11}\,\mbox{m}^3\,\mbox{kg}^{-1}\,

\mbox{s}^{-2})(5.9736 \times 10^{24}\,\mbox{kg})}{(6371.01\,\mbox
↪→{km})^2} \\

&=& 9.82066032\,\mbox{m/s}^2
\f}

17.6 Code formatting style

We use clang-format as our code formatter. The .clang-format file in root directory describes the rules to
conform with. For Visual Studio Code developers, the official extension of C/C++ provided by Microsoft can help you
format your codes following the rules. With this extension installed, format your code with shift+command/alt+f.
Configure your VS Code settings as "C_Cpp.clang_format_style": "file" (you can look up this option
by pasting it into the search box of VS Code settings page), and all this stuff will take into effect. You may also set
"editor.formatOnSave": true to avoid formatting files everytime manually.

17.7 Adding a unit test

We use GoogleTest as our test framework. Write your test under the corresponding module folder at
abacus-develop/tests, then append the test to tests/CMakeLists.txt. If there are currently no unit
tests provided for the module, do as follows. module_base provides a simple demonstration.

• Add a folder named test under the module.
• Append the content below to CMakeLists.txt of the module:

IF (BUILD_TESTING)
add_subdirectory(test)

endif()

• Add a blank CMakeLists.txt under module*/test.
To add a unit test:

• Write your test under GoogleTest framework.
• Add your testing source code with suffix *_test.cpp in test directory.
• Append the content below to CMakeLists.txt of the module:

AddTest(
TARGET <module_name>_<test_name> # this is the executable file name of the test
SOURCES <test_name>.cpp

OPTIONAL: if this test requires external libraries, add them with "LIBS"␣
↪→statement.
LIBS math_libs # `math_libs` includes all math libraries in ABACUS.

)

• Build with -D BUILD_TESTING=1 flag, cmake will look for GoogleTest in the default path (usually /
usr/local); if not found, you can specify the path with -D GTEST_DIR. You can find built testing programs
under build/source/<module_name>/test.

• Follow the installing procedure of CMake. The tests will move to build/test.

17.6. Code formatting style 204

https://marketplace.visualstudio.com/items?itemName=ms-vscode.cpptools
https://github.com/google/googletest

ABACUS

• Considering -D BUILD_TESTING=1, the compilation will be slower compared with the case -D
BUILD_TESTING=0.

17.8 Running unit tests

1. Compiling ABACUS with unit tests.
In order to run unit tests, ABACUS needs to be configured with -D BUILD_TESTING=ON flag. For example:

cmake -B build -DBUILD_TESTING=ON

then build ABACUS and unit testing with

cmake --build build -j${number of processors}

It is import to run the folloing command before running unit tests:

cmake --install build

to install mandatory supporting input files for unit tests. If you modified the unit tests to add new tests or learn how
to write unit tests, it is convenient to run

cmake --build build -j${number of processors} --target ${unit test name}

to build a specific unit test. And please remember to run cmake --install build after building the unit
test if the unit test requires supporting input files.

2. Running unit tests
The test cases are located in build/source/${module_name}/test directory. Note that there are other
directory names for unit tests, for example, test_parallel for running parallel unit tests, test_pw for run-
ning unit tests only used in plane wave basis calculation.
You can run a single test in the specific directory. For example, run

./cell_unitcell_test

under the directory of build/source/module_cell/test to run the test cell_unitcell_test.
However, it is more convenient to run unit tests with ctest command under the build directory. You can
check all unit tests by

ctest -N

The results will be shown as

Test project /root/abacus/build
Test #1: integrated_test
Test #2: Container_UTs
Test #3: base_blas_connector
Test #4: base_blacs_connector
Test #5: base_timer
...

Note that the first one is integrated test, which is not a unit test. It is the test suite for testing the whole ABACUS
package. The examples are located in the tests/integrate directory.
To run a subset of tests, run the following command

17.8. Running unit tests 205

ABACUS

ctest -R <test-match-pattern> -V

For example, ctest -R cell will perform tests with name matched by cell. You can also run a single test
with

ctest -R <test-name>

For example, ctest -R cell_unitcell_test_readpp will perform test
cell_unitcell_test_readpp. To run all the unit tests, together with the integrated test, run

cmake --build build --target test ARGS="-V --timeout 21600"

in the abacus-develop directory.

17.9 Debugging the codes

For the unexpected results when developing ABACUS, GDB will come in handy.
1. Compile ABACUS with debug mode.

cmake -B build -DCMAKE_BUILD_TYPE=Debug

2. After building and installing the executable, enter the input directory, and launch the debug session with gdb
abacus. For debugging in Visual Studio Code, please set cwd to the input directory, and program to the path of
ABACUS executable.

3. Set breakpoints, and run ABACUS by typing “run” in GDB command line interface. If the program hits the
breakpoints or exception is throwed, GDB will stop at the erroneous code line. Type “where” to show the stack
backtrace, and “print i” to get the value of variable i.

4. For debugging ABACUS in multiprocessing situation, mpirun -n 1 gdb abacus : -n 3 abacus will
attach GDB to the master process, and launch 3 other MPI processes.

For segmentation faults, ABACUS can be built with Address Sanitizer to locate the bugs.

cmake -B build -DENABLE_ASAN=1

Run ABACUS as usual, and it will automatically detect the buffer overflow problems and memory leaks. It is also possible
to use GDB with binaries built by Address Sanitizer.
Valgrind is another option for performing dynamic analysis.

17.10 Adding a new building component

ABACUS uses CMake as its default building system. To add a new building component:
1. Add an OPTION to toggle the component to the CMakeLists.txt file under root directory. For example:

OPTION(ENABLE_NEW_COMPONENT "Enable new component" OFF)

2. Add the new component. For example:

17.9. Debugging the codes 206

https://www.sourceware.org/gdb/
https://code.visualstudio.com/docs/cpp/cpp-debug
https://code.visualstudio.com/docs/cpp/launch-json-reference#_cwd
https://code.visualstudio.com/docs/cpp/launch-json-reference#_program-required
https://github.com/google/sanitizers/wiki/AddressSanitizer
https://github.com/google/sanitizers/wiki/AddressSanitizerAndDebugger
https://valgrind.org/

ABACUS

IF (ENABLE_NEW_COMPONENT)
add_subdirectory(module_my_new_feature) # if the feature is implemented in a␣

↪→subdirectory
find_package(NewComponent REQUIRED) # if third-party libs are required
target_link_libraries(${ABACUS_BIN_NAME} PRIVATE NewComponent) # if the␣

↪→component is linked
include_directories(${NewComponent_INCLUDE_DIRS}) # if the component is included

endif()

3. Add the required third-party libraries to Dockerfiles.
4. After the changes above are merged, submit another PR to build and test the new component in the CI pipeline.

• For integration test and unit test: add -DENABLE_NEW_COMPONENT=ON to the building step at .
github/workflows/test.yml.

• For building test: add -DENABLE_NEW_COMPONENT=ON as a new configuration at .github/
workflows/build_test_cmake.yml.

17.11 Generating code coverage report

This feature requires using GCC compiler. We use gcov and lcov to generate code coverage report.
1. Add -DENABLE_COVERAGE=ON for CMake configure command.

cmake -B build -DBUILD_TESTING=ON -DENABLE_COVERAGE=ON

2. Build, install ABACUS, and run test cases. Please note that since all optimizations are disabled to gather running
status line by line, the performance is drastically decreased. Set a longer time out to ensure all tests are executed.

cmake --build build --target test ARGS="-V --timeout 21600"

If configuration fails unfortunately, you can find required files (including three *.cmake and llvm-cov-wrapper),
and copy these four files into /abacus-develop/cmake. Alternatively, you can define the path with option
-D CMAKE_CURRENT_SOURCE_DIR.

3. Generate HTML report.

cd build/
make lcov

Now you can copy build/lcov to your local device, and view build/lcov/html/all_targets/index.
html.
We use Codecov to host and visualize our code coverage report. Analysis is scheduled after a new version releases; this
action can also be manually triggered.

17.11. Generating code coverage report 207

https://github.com/baixiaokuang/CMake-codecov/tree/master/cmake
https://codecov.io/
https://app.codecov.io/gh/deepmodeling/abacus-develop
https://github.com/deepmodeling/abacus-develop/actions/workflows/coverage.yml

ABACUS

17.12 Submitting a Pull Request

1. Fork the ABACUS repository. If you already had an existing fork, sync the fork to keep your modification up-to-
date.

2. Pull your forked repository, create a new git branch, and make your changes in it:

git checkout -b my-fix-branch

3. Coding your patch, including appropriate test cases and docs. To run a subset of unit test, use ctest -R
<test-match-pattern> to perform tests with name matched by given pattern.

4. After tests passed, commit your changes with a proper message.
5. Push your branch to GitHub:

git push origin my-fix-branch

6. In GitHub, send a pull request (PR) with deepmodeling/abacus-develop:develop as the base repos-
itory. It is required to document your PR following our guidelines.

7. After your pull request is merged, you can safely delete your branch and sync the changes from the main (upstream)
repository:

• Delete the remote branch on GitHub either through the GitHub web UI or your local shell as follows:

git push origin --delete my-fix-branch

• Check out the master branch:

git checkout develop -f

• Delete the local branch:

git branch -D my-fix-branch

• Update your master with the latest upstream version:

git pull --ff upstream develop

17.13 Commit message guidelines

A well-formatted commit message leads a more readable history when we look through some changes, and helps us
generate change log. We follow up The Conventional Commits specification for commit message format. This format is
also required for PR title and message. The commit message should be structured as follows:

<type>[optional scope]: <description>

[optional body]

[optional footer(s)]

• Header
– type: The general intention of this commit

∗ Feature: A new feature

17.12. Submitting a Pull Request 208

https://docs.github.com/en/github/getting-started-with-github/fork-a-repo
https://github.com/deepmodeling/abacus-develop
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/working-with-forks/syncing-a-fork
https://docs.github.com/en/repositories/configuring-branches-and-merges-in-your-repository/managing-branches-in-your-repository/deleting-and-restoring-branches-in-a-pull-request#deleting-a-branch-used-for-a-pull-request
https://www.conventionalcommits.org

ABACUS

∗ Fix: A bug fix
∗ Docs: Only documentation changes
∗ Style: Changes that do not affect the meaning of the code
∗ Refactor: A code change that neither fixes a bug nor adds a feature
∗ Perf: A code change that improves performance
∗ Test: Adding missing tests or correcting existing tests
∗ Build: Changes that affect the build system or external dependencies
∗ CI: Changes to our CI configuration files and scripts
∗ Revert: Reverting commits

– scope: optional, could be the module which this commit changes; for example, orbital
– description: A short summary of the code changes: tell others what you did in one sentence.

• Body: optional, providing detailed, additional, or contextual information about the code changes, e.g. themotivation
of this commit, referenced materials, the coding implementation, and so on.

• Footer: optional, reference GitHub issues or PRs that this commit closes or is related to. Use a keyword to close
an issue, e.g. “Fix #753”.

Here is an example:

Fix(lcao): use correct scalapack interface.

`pzgemv_` and `pzgemm_` used `double*` for alpha and beta parameters but not␣
↪→`complex*` , this would cause error in GNU compiler.

Fix #753.

17.13. Commit message guidelines 209

https://docs.github.com/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue#linking-a-pull-request-to-an-issue-using-a-keyword

CHAPTER

EIGHTEEN

LISTS OF CONTINUOUS INTEGRATION (CI) PIPELINES

The directory ./github/workflows contains the continuous integration (CI) pipelines for the project. The pipelines
are written in YAML format and are executed by GitHub Actions. Check the Actions page of the repo for the status of
the pipelines.

The tests without mentioning are not executed.

18.1 On Pull Request (PR)

The following CI pipelines are triggered on pull request (PR) creation or update (the user pushes a new commit to the
incoming branch):

• Integration test and unit tests (test.yml): This pipeline builds ABACUS with all available features, runs inte-
gration tests, and runs unit tests.

• Building tests with CMake (build_test_cmake.yml): This pipeline builds ABACUS with each feature sep-
arately, ensuring: (i) there are no conflicts between features, (ii) the compilation is successful whether the feature
is enabled, and (iii) it works well on multiple platforms, i.e. with GNU+OpenBLAS toolchain and Intel+MKL
toolchain.

• Rerender the docs site: This pipeline rerenders the documentation site on Read the Docs. It is automatically
triggered when the documentation is updated.

• Testing GPU features (cuda.yml): This pipeline builds ABACUS with GPU support and runs several tests on
the GPU. Currently disabled for the lack of GPU resource.

After the PR merges into the main branch, the following pipelines are triggered:
• Building Docker images(devcontainer.yml): This pipeline builds the Docker images with latest codes
and executables. The images are tagged as abacus-gnu:latest, abacus-intel:latest, and
abacus-cuda:latest, and then pushed to the GitHub Container Registry (ghcr.io/deepmodeling) and
AliCloud Container mirror(registry.dp.tech/deepmodeling). For example: docker pull ghcr.io/
deepmodeling/abacus-intel:latest.

210

https://github.com/deepmodeling/abacus-develop/actions
https://readthedocs.org/projects/abacus-rtd/builds/
http://ghcr.io/deepmodeling

ABACUS

18.2 On Routine

• Dynamic analysis (dynamic_analysis.yml): This pipeline runs integration tests with AddressSanitizer to
detect memory errors. The pipeline is scheduled to run every Sunday. The results are published on GitHub Pages.

18.3 On Release

• Coverage test (coverage.yml): This pipeline builds ABACUS with all available features, runs integration tests,
and runs unit tests. It also measures the code coverage of the tests. The results are published at codecov.io.

• Building tagged Docker images (image.yml): The built image is tagged in the pattern of abacus:3.
5.0, and pushed to the GitHub Container Registry (ghcr.io/deepmodeling) and AliCloud Container mir-
ror(registry.dp.tech/deepmodeling). Use abacus:latest to fetch the latest image. For example: docker
pull ghcr.io/deepmodeling/abacus:latest.

18.2. On Routine 211

https://github.com/google/sanitizers/wiki/AddressSanitizer
https://deepmodeling.github.io/abacus-develop/
https://app.codecov.io/gh/deepmodeling/abacus-develop
http://ghcr.io/deepmodeling

CHAPTER

NINETEEN

FREQUENTLY ASKED QUESTIONS

• General Questions

• Installation

• Setting up jobs

• Failed jobs

• Miscellaneous

19.1 General Questions

1. What are the merits of ABACUS in respect of functionality, performance, and/or accuracy?
Users are referred to the introduction of features of ABACUS in the feature list.

19.2 Installation

19.3 Setting up jobs

1. Why pseudopotential files must be provided in LCAO calculation?
The pseudopotentials are used to approximate the potential of nuclear and core electrons, while the numerical orbitals
are basis sets used to expand the Hamiltonian. So both pseudopotential and numerical orbital files are needed in LCAO
calculation.
2. What is the correlation between pseudopotential and numerical orbital files?
The numerical orbital files are generated for a specific pseudopotential. So the right numerical orbital files must be chosen
for a specific pseudopotential. We suggest users choose numerical orbital files and the corresponding pseudopotential
files from the ABACUS website because their accuracy has been tested. However, interesting users may also generate
their own numerical orbitals for a specific type of pseudopential by using the tools provided in the abacus-develop/tools
directory.
3. How to set ecutwfc in LCAO calculation? Must it be 100 Ry for a numerical orbital file like Cu_lda_7.
0au_100Ry_2s2p2d?
It is recommended to set ecutwfc to the value that the numerical orbital file suggests, but it is not a must. The ecutwfc
value only affects the number of FFT grids.
4. Does ABACUS support LCAO calculations accounting for external electric field effects?
Yes, users are referred to documentation on external electric field.

212

http://abacus.ustc.edu.cn/features/list.htm
http://abacus.ustc.edu.cn/pseudo/list.htm
https://github.com/deepmodeling/abacus-develop/tree/develop/tools

ABACUS

5. Can ABACUS calculate non-periodic systems, such as ionic liquids?
Non-periodic systems such as liquid systems can be calculated by using supercell and gamma-only calculation.
6. How to perform spin-orbital coupling (SOC) calculations in ABACUS?
Apart from setting relavant keys (lspinorb to 1) in the INPUT file, SOC calculations can only be performed with fully-
relativistic pseudopotentials. Users are suggested to download fully-relativistic versions of SG15_ONCV pseudopotential
files from a website. The numerical orbital files generated from the corresponding scalar-relativistic pseudoptential files
by ABACUS (here) can be used in collaboration with the fully-relativistic pseudopotentials.
7. How to restart jobs in abacus?
For restarting SCF calculations, users are referred to the documentation about continuation of job. For restarting MD
calculations, please see md_restart.
8. Can DeePKS model be used for structural optimization calculation? What parameters need to be modified or
called?
If you train the DeePKS model with force labels, then the DeePKS model can provide force calculation with the same
accuracy as your target method, and can thus be used for structural optimization. To do that, you just need to train the
model with force label enabled.
9. How to estimate the max memory consumption?
Run /usr/bin/time -v mpirun -n 4 abacus, and locate “Maximum resident set size” in the output log at
the end. Please note that this value is the peak memory size of the main MPI process.
10. Why there are two sigma (smearing_sigma and dos_sigma) in some examples for dos calculation?
The tag smearing_sigma is used for SCF calculation, and does not affect NSCF calculation. The tag
dos_smearing is only used for plotting density of states, which does affect SCF or NSCF results. So smear-
ing_sigma should not be set in dos calculation.
11. How to set nbands and ncpus?
For both pw and LCAO calculations, the default value for nbands can be found here. Note that the number of CPUs
called for a parallel job (i.e., the number specified after the command mpirun -n) should be smaller than nbands,
otherwise the job will fail with an error message nbands < ncpus. Note also that for LCAO calculations, nbands
should always be smaller than nlocal, i.e., the number of the atomic orbital basis of the system.
back to top

19.4 Failed jobs

1. Why my calculation is pend by using mpirun?
This is usually caused by overloading of CPUs’ memory without specifying thread numbers. ABACUS detects avail-
able hardware threads, and provides these information at the beginning of the program if used threads mismatches
with hardware availability. User should keep total used threads(i.e. the number of OpenMP threads times the num-
ber of MPI processes) no more than the count of available CPUs(can be determined by lscpu). Setting export
OMP_NUM_THREADS=1 will solve this problem, or one can use the command like OMP_NUM_THREADS=1 mpirun
-n 8 abacus to rerun failed jobs.
2. My relaxation failed. How to deal with it?
This is usually caused by the difficulty in converging charge density. Reducing charge mixing coefficient
(mixing_beta) might help. For large systems up to hundreds of atoms, it is suggested to choose the Kerker mix-
ing method by setting parameter “mixing_gg0” as “1.0”.

19.4. Failed jobs 213

http://quantum-simulation.org/potentials/sg15_oncv/upf/
http://abacus.ustc.edu.cn/pseudo/list.htm
https://abacus.deepmodeling.com/en/latest/advanced/input_files/input-main.html#nbands

ABACUS

Sometimes, loose convergence threshold of charge density (parameter “scf_thr”) will cause atomic forces not correctly
enough, please set it at most “1e-7” for relaxation calculation.
3. Why the program is halted?
If the program prompt something like “KILLED BY SIGNAL: 9 (Killed)”, it may be caused by insufficient memory. You
can use dmesg to print out system info regarding memory management, and check if there is “Out of memory: Killed”
at the end of output info. Please try using less processes and threads for calculation, or modify the input parameters
requiring less memory.
If the error message is “Segmentation fault”, or there is no enough information on the error, please feel free to submit an
issue.

19.5 Miscellaneous

1. How to visualize charge density file?
The output file SPIN1_CHG.cube can be visualized by using VESTA.
2. How to change cif file directly to STRU file?
One way to change from cif to STRU is to use the ASE-ABACUS interface. An example of the converting script is
provided below:

from ase.io import read, write
from pathlib import Path

cs_dir = './'
cs_cif = Path(cs_dir, 'SiO.cif')
cs_atoms = read(cs_cif, format='cif')
cs_stru = Path(cs_dir, 'STRU')
pp = {'Si':'Si.upf','O':'O.upf'}
basis = {'Si':'Si.orb','O':'O.orb'}
write(cs_stru, cs_atoms, format='abacus', pp=pp, basis=basis)

3. What is the convergence criterion for the SCF process in ABACUS?
ABACUS applies the density difference between two SCF steps (labeled as DRHO in the screen output) as the convergence
criterion, which is considered as a more robust choice compared with the energy difference. DRHO is calculated via DRHO
= |rho(G)-rho_previous(G)|^2. Note that the energy difference between two SCF steps (labed as EDIFF) is
also printed out in the screen output.
**4. Why EDIFF is much slower than DRHO?
For metaGGA calculations, it is normal because in addition to charge density, kinetic density also needs to be considered
in metaGGA calculations. In this case, you can try set mixing_tau = true. If you find EDIFF is much slower than
DRHO for non-metaGGA calculations, please start a new issue to us.
back to top

19.5. Miscellaneous 214

https://gitlab.com/1041176461/ase-abacus

	Easy Installation
	Prerequisites
	Install requirements
	Install requirements by toolchain
	Get ABACUS source code
	Update to latest release

	Configure
	Build and Install
	Run
	Container Deployment
	Install by conda
	Developing with conda

	Two Quick Examples
	Running SCF Calculation
	A quick LCAO example
	A quick PW example

	Running Geometry Optimization
	A quick LCAO example
	A quick PW example

	Brief Introduction of the Input Files
	INPUT
	STRU
	KPT

	Brief Introduction of the Output Files
	INPUT
	running_scf.log
	KPT
	istate.info
	STRU_SIMPLE.cif
	warning.log

	Advanced Installation Options
	Build with Libxc
	Build with DeePKS
	Build with DeePMD-kit
	Build with LibRI and LibComm
	Build Unit Tests
	Build Performance Tests
	Build with CUDA support
	Extra prerequisites

	Build math library from source
	Build ABACUS with make
	Add Libxc Support
	Add DeePKS Support
	Add DeePMD-kit Support
	Add LibRI Support

	Running SCF
	Initializing SCF
	Charge Density
	Wave function

	Constructing the Hamiltonian
	Exchange-Correlation Functionals
	DFT+U

	Solving the Hamiltonian
	Explicit Diagonalization
	Stochasic DFT

	Converging SCF
	Charge Mixing
	Smearing

	Accelerating the Calculation
	K-point Parallelization
	K-point Symmetry
	Accelerating Grid Integration
	Low Dimension Materials

	SCF in Complex Environments
	Implicit Solvation Model
	External Electric Field
	Dipole Correction
	Compensating Charge
	Van-der-Waals Correction

	Spin-polarization and SOC
	Non-spin-polarized Calculations
	Collinear Spin Polarized Calculations
	Constraint DFT for collinear spin polarized calculations

	Noncollinear Spin Polarized Calculations
	Constraint Spin functionality for noncollinear spin polarized calculations

	For the continuation job

	SOC Effects
	SOC
	Pseudopotentials and Numerical Atomic Orbitals
	Partial-relativistic SOC Effect

	Basis Set and Pseudopotentials
	Basis Set
	Generating atomic orbital bases
	BSSE Correction
	Pseudopotentials

	Geometry Optimization
	Optimization Algorithms
	BFGS method
	SD method
	CG method

	Constrained Optimization
	Fixing Atomic Positions
	Fixing Cell Parameters

	Molecular Dynamics
	FIRE
	NVE
	Nose Hoover Chain
	Langevin
	Anderson
	Berendsen
	Rescaling
	Rescale_v
	MSST
	DPMD

	Accelerate Performance
	CUDA GPU Implementations
	Required hardware/software
	Building ABACUS with the GPU support:
	Run with the GPU support by editing the INPUT script:
	Examples
	Known limitations
	FAQ

	Electronic Properties and Outputs
	Extracting Band Structure
	Calculating DOS and PDOS
	DOS
	PDOS

	Mulliken Charge Analysis
	Extracting Electrostatic Potential
	Extracting Wave Functions
	wave function in G space
	wave function in real space

	Extracting Charge Density
	Extracting Hamiltonian and Overlap Matrices
	out_mat_hs
	out_mat_hs2
	get_S
	examples

	Extracting Density Matrices
	Berry Phase Calculation

	Interfaces to Other Softwares
	DeePKS
	DP-GEN
	init_bulk and run
	autotest

	DeepH
	Hefei-NAMD
	Phonopy
	Wannier90
	ASE
	Introduction
	Installation
	Environment variables
	ABACUS Calculator
	MD Analysis
	SPAP Analysis

	PYATB
	Introduction
	Installation
	How to use

	ShengBTE
	Introduction
	Prepare
	How to use
	1. Calculating the second-order force constants
	1.1 Structure optimization
	1.2 Calculating the second-order force constants
	1.3 Post-processing
	2. Calculating the third-order force constants
	2.1 Obtaining perturbed configurations
	2.2 Calculation of atomic forces for perturbation configurations
	3. Run ShengBTE to obtain lattice thermal conductivity

	Conclusion

	CANDELA
	Requirements for using CANDELA

	TB2J
	Introduction
	Installation
	The Heisenberg model
	How to use
	Collinear calculation without SOC
	1. Perform ABACUS calculation.
	2. Perform TB2J calculation:

	Non-collinear calculation with SOC
	Parameters of abacus2J.py
	Acknowledgments

	Detailed Introduction of the Input Files
	Full List of INPUT Keywords
	System variables
	suffix
	ntype
	calculation
	esolver_type
	symmetry
	symmetry_prec
	symmetry_autoclose
	kpar
	bndpar
	latname
	psi_initializer
	init_wfc
	init_chg
	init_vel
	nelec
	nelec_delta
	nupdown
	dft_functional
	xc_temperature
	pseudo_rcut
	pseudo_mesh
	mem_saver
	diago_proc
	nbspline
	kspacing
	min_dist_coef
	device
	precision

	Variables related to input files
	stru_file
	kpoint_file
	pseudo_dir
	orbital_dir
	read_file_dir
	wannier_card

	Plane wave related variables
	ecutwfc
	ecutrho
	nx, ny, nz
	ndx, ndy, ndz
	pw_seed
	pw_diag_thr
	pw_diag_nmax
	pw_diag_ndim
	erf_ecut
	fft_mode
	erf_height
	erf_sigma

	Numerical atomic orbitals related variables
	nb2d
	lmaxmax
	lcao_ecut
	lcao_dk
	lcao_dr
	lcao_rmax
	search_radius
	search_pbc
	bx, by, bz

	Electronic structure
	basis_type
	ks_solver
	nbands
	nbands_istate
	nspin
	smearing_method
	smearing_sigma
	smearing_sigma_temp
	mixing_type
	mixing_beta
	mixing_beta_mag
	mixing_ndim
	mixing_restart
	mixing_dmr
	mixing_gg0
	mixing_gg0_mag
	mixing_gg0_min
	mixing_angle
	mixing_tau
	mixing_dftu
	gamma_only
	printe
	scf_nmax
	scf_thr
	scf_thr_type
	chg_extrap
	lspinorb
	noncolin
	soc_lambda

	Electronic structure (SDFT)
	method_sto
	nbands_sto
	nche_sto
	emin_sto
	emax_sto
	seed_sto
	initsto_ecut
	initsto_freq
	npart_sto

	Geometry relaxation
	relax_method
	relax_new
	relax_scale_force
	relax_nmax
	relax_cg_thr
	cal_force
	force_thr
	force_thr_ev
	force_thr_ev2
	relax_bfgs_w1
	relax_bfgs_w2
	relax_bfgs_rmax
	relax_bfgs_rmin
	relax_bfgs_init
	cal_stress
	stress_thr
	press1, press2, press3
	fixed_axes
	fixed_ibrav
	fixed_atoms
	cell_factor

	Variables related to output information
	out_mul
	out_freq_elec
	out_chg
	out_pot
	out_dm
	out_dm1
	out_wfc_pw
	out_wfc_r
	out_wfc_lcao
	out_dos
	out_band
	out_proj_band
	out_stru
	out_bandgap
	out_level
	out_alllog
	out_mat_hs
	out_mat_r
	out_mat_hs2
	out_mat_t
	out_mat_dh
	out_mat_xc
	out_app_flag
	out_ndigits
	out_interval
	band_print_num
	bands_to_print
	out_element_info
	restart_save
	restart_load
	rpa

	Density of states
	dos_edelta_ev
	dos_sigma
	dos_scale
	dos_emin_ev
	dos_emax_ev
	dos_nche

	NAOs
	bessel_nao_ecut
	bessel_nao_tolerence
	bessel_nao_rcut
	bessel_nao_smooth
	bessel_nao_sigma

	DeePKS
	deepks_out_labels
	deepks_scf
	deepks_model
	bessel_descriptor_lmax
	bessel_descriptor_ecut
	bessel_descriptor_tolerence
	bessel_descriptor_rcut
	bessel_descriptor_smooth
	bessel_descriptor_sigma
	deepks_bandgap
	deepks_out_unittest

	OFDFT: orbital free density functional theory
	of_kinetic
	of_method
	of_conv
	of_tole
	of_tolp
	of_tf_weight
	of_vw_weight
	of_wt_alpha
	of_wt_beta
	of_wt_rho0
	of_hold_rho0
	of_lkt_a
	of_read_kernel
	of_kernel_file
	of_full_pw
	of_full_pw_dim

	Electric field and dipole correction
	efield_flag
	dip_cor_flag
	efield_dir
	efield_pos_max
	efield_pos_dec
	efield_amp

	Gate field (compensating charge)
	gate_flag
	zgate
	block
	block_down
	block_up
	block_height

	Exact Exchange
	exx_hybrid_alpha
	exx_hse_omega
	exx_separate_loop
	exx_hybrid_step
	exx_mixing_beta
	exx_lambda
	exx_pca_threshold
	exx_c_threshold
	exx_v_threshold
	exx_dm_threshold
	exx_c_grad_threshold
	exx_v_grad_threshold
	exx_schwarz_threshold
	exx_cauchy_threshold
	exx_cauchy_force_threshold
	exx_cauchy_stress_threshold
	exx_ccp_threshold
	exx_ccp_rmesh_times
	exx_distribute_type
	exx_opt_orb_lmax
	exx_opt_orb_ecut
	exx_opt_orb_tolerence
	exx_real_number

	Molecular dynamics
	md_type
	md_nstep
	md_dt
	md_thermostat
	md_tfirst, md_tlast
	md_restart
	md_restartfreq
	md_dumpfreq
	dump_force
	dump_vel
	dump_virial
	md_seed
	md_tfreq
	md_tchain
	md_pmode
	md_prec_level
	ref_cell_factor
	md_pcouple
	md_pfirst, md_plast
	md_pfreq
	md_pchain
	lj_rcut
	lj_epsilon
	lj_sigma
	pot_file
	msst_direction
	msst_vel
	msst_vis
	msst_tscale
	msst_qmass
	md_damp
	md_tolerance
	md_nraise
	cal_syns
	dmax

	DFT+U correction
	dft_plus_u
	orbital_corr
	hubbard_u
	yukawa_potential
	yukawa_lambda
	uramping
	omc
	onsite_radius

	vdW correction
	vdw_method
	vdw_s6
	vdw_s8
	vdw_a1
	vdw_a2
	vdw_d
	vdw_abc
	vdw_C6_file
	vdw_C6_unit
	vdw_R0_file
	vdw_R0_unit
	vdw_cutoff_type
	vdw_cutoff_radius
	vdw_radius_unit
	vdw_cutoff_period
	vdw_cn_thr
	vdw_cn_thr_unit

	Berry phase and wannier90 interface
	berry_phase
	gdir
	towannier90
	nnkpfile
	wannier_method
	wannier_spin
	out_wannier_mmn
	out_wannier_amn
	out_wannier_eig
	out_wannier_unk
	out_wannier_wvfn_formatted

	TDDFT: time dependent density functional theory
	td_edm
	td_print_eij
	td_propagator
	td_vext
	td_vext_dire
	td_stype
	td_ttype
	td_tstart
	td_tend
	td_lcut1
	td_lcut2
	td_gauss_freq
	td_gauss_phase
	td_gauss_sigma
	td_gauss_t0
	td_gauss_amp
	td_trape_freq
	td_trape_phase
	td_trape_t1
	td_trape_t2
	td_trape_t3
	td_trape_amp
	td_trigo_freq1
	td_trigo_freq2
	td_trigo_phase1
	td_trigo_phase2
	td_trigo_amp
	td_heavi_t0
	td_heavi_amp
	out_dipole
	out_efield
	ocp
	ocp_set

	Variables useful for debugging
	t_in_h
	vl_in_h
	vnl_in_h
	vh_in_h
	vion_in_h
	test_force
	test_stress
	colour
	test_skip_ewald

	Electronic conductivities
	cal_cond
	cond_che_thr
	cond_dw
	cond_wcut
	cond_dt
	cond_dtbatch
	cond_smear
	cond_fwhm
	cond_nonlocal

	Implicit solvation model
	imp_sol
	eb_k
	tau
	sigma_k
	nc_k

	Deltaspin
	sc_mag_switch
	decay_grad_switch
	sc_thr
	nsc
	nsc_min
	sc_scf_nmin
	alpha_trial
	sccut
	sc_file

	Quasiatomic Orbital (QO) analysis
	qo_switch
	qo_basis
	qo_strategy
	qo_screening_coeff
	qo_thr

	The STRU file
	Examples
	No latname
	latname fcc

	Structure of the file
	ATOMIC_SPECIES
	NUMERICAL_ORBITAL
	LATTICE_CONSTANT
	LATTICE_VECTORS
	LATTICE_PARAMETERS
	ATOMIC_POSITIONS
	More Key Words

	The KPT file
	Gamma-only Calculations
	Generate k-mesh automatically
	Set k-points explicitly
	Band structure calculations

	How to Cite
	Development team
	ABACUS Contribution Guide
	Contribution Process

	Contributing to ABACUS
	Table of Contents
	Got a question?
	Structure of the package
	Submitting an Issue
	Comment style for documentation
	Code formatting style
	Adding a unit test
	Running unit tests
	Debugging the codes
	Adding a new building component
	Generating code coverage report
	Submitting a Pull Request
	Commit message guidelines

	Lists of continuous integration (CI) pipelines
	On Pull Request (PR)
	On Routine
	On Release

	Frequently Asked Questions
	General Questions
	Installation
	Setting up jobs
	Failed jobs
	Miscellaneous

