ABACUS

ABACUS

Oct 24, 2023

QUICK START

Easy Installation 2
1.1 PrerequiSites o i e e e e e e e e 2
1.2 Imstall requirements L 3
1.3 Install requirements by toolchain L 3
1.4 Get ABACUS source code v i v i i i e e e e e e e 3
15 Configure o o e e e e e e e e e e 4
1.6 Buildand Install e 5
1.7 Run . . . o e e e 6
1.8 Container Deployment L e e 6
1.9 Installbyconda e e e e e e e 7
Two Quick Examples 8
2.1 Running SCF Calculation e 8
2.2 Running Geometry Optimization v v v v v it e e e e e e e e e e e 11
Brief Introduction of the Input Files 13
3.1 INPUT . . . o e e e e e s 13
32 STRU e e e e 14
33 KPT . . . o e e e e e 15
Advanced Installation Options 16
4.1 Buildwith Libxc e e e e e e 16
42 Buildwith DeePKS e e e e e 16
4.3 Build with DeePMD-kit e e e e e e e e 17
4.4 Build with LibRI and LibComm e 17
45 BuilldUnit Tests o e e e e e e e e e e e 17
4.6 Build with CUDA SUPPOIT o o v i e e et e e e e e e e e e e e e e e e e e e 18
477 Build math library from source L e e e e e e e 18
4.8 Build ABACUSwithmake e e e e e e e 18
Running SCF 22
5.1 Initializing SCF e e e e e e 22
5.2 Constructing the Hamiltonian L e 22
5.3 Solving the Hamiltonian 0L e e e e e e 24
54 Converging SCF 25
5.5 Accelerating the Calculation e e e e e e e 26
5.6 SCFin Complex Environments oo i v it it et e e e e e e 27
5.7 Spin-polarization and SOC L e e e e 30
5.8 SOCEMTects o o e 31
Basis Set and Pseudopotentials 32

9

6.1 Basis Set e e e

6.2 Generating atomic orbital bases L. e e e e e e e e
6.3 BSSE Correction e e e e
6.4 Pseudopotentials e

Geometry Optimization
7.1 Optimization Algorithms
7.2 Constrained Optimization o o L e e e e e e e e e e e e e

Molecular Dynamics

8.1 FIRE e e e e e e e e e e e e
8.2 NVE . . e
83 NoseHooverChain e e e
8.4 Langevin e e e e e e e e e e e
8.5 ANderson e e e e e e e e e e e e
8.6 Berendsen e e e e e e e e e e e e
87 Rescaling o e e e e e e e
8.8 Rescale v e e
8.9 MSST . . . e e e
8.10 DPMD e e e e e

Accelerate Performance
9.1 CUDA GPU Implementations v v v v v vt e i e e et e e e e e e e e e e e

10 Electronic Properties and Outputs

10.1 Extracting Band Structureo e
10.2 Calculating DOS and PDOS e e e e e
10.3 Mulliken Charge Analysis o o i i e e e e e e e e e e
10.4 Extracting Electrostatic Potential L oo
10.5 Extracting Wave Functions L e e e e e e e
10.6 Extracting Charge Density o o e e
10.7 Extracting Hamiltonian and Overlap Matrices v v it
10.8 Extracting Density Matrices o o 0 it e e e e e e e e e
10.9 Berry Phase Calculation e e

11 Interfaces to Other Softwares

11.1 DeePKS e e e
11.2 DP-GEN . . . e e
11.3 DeepH o o o e e e e e
11.4 Hefei-NAMD
11.5 Phonopy o o o e e e
11.6 Wannier90 L e e e e e e
L1.7 ASE . . .
11.8 PYATB . . . o e e e
11.9 ShengBTE
11.10 CANDELA e

12 Detailed Introduction of the Input Files

12.1 Full List of INPUT Keywords e e e e e e e e
122 The STRUfile e e e e e
123 The KPTfile

13 How to Cite

14 Development team

34
34
35

37
38
38
38
38
39
39
39
39
39
39

41
41

43
43
44
47
48
50
50
51
53
54

56
56
56
63
64
64
65
67
69
71
76

77
77
165
171

173

174

15 ABACUS Contribution Guide

15.1

Contribution Process e e e e e e

16 Contributing to ABACUS

16.1
16.2
16.3
16.4
16.5
16.6
16.7
16.8
16.9

Table of Contents o o e e e e e e e e e e e e

Structure of the package L. e
Submitting an Issue L L e e e e e e e e
Comment style for documentation Lo e
Code formatting style L L e e e e e
Adding aunittest o L e e e e e e e e e e e e e e e e e
Running unit tests o e e e e e e e e e e e e e e e
Debuggingthecodes e

16.10 Generating code COVETage rePOTt v v v v v v vt e e e e e e e e e e e e e e e e e e e
16.11 Submittinga Pull Request L
16.12 Commit message guidelines L e e e e e e e e

17 Frequently Asked Questions

17.1
17.2
17.3
17.4
17.5

General QUESHIONS e e e e e e e e e e e e e e
Installation e e e e e e e e e e e e
SEtting up JObS . .« . . e e e e e e e e e e e e e e
Failed jobs e e e e
Miscellaneous e e e e e e e

175
175

176
176
176
177
179
179
180
180
181
182
182
183
184

ABACUS

ABACUS (Atomic-orbital Based Ab-initio Computation at UStc) is an open-source computer code package based on
density functional theory (DFT). The package utilizes both plane wave and numerical atomic basis sets with the usage
of norm-conserving pseudopotentials to describe the interactions between nuclear ions and valence electrons. ABACUS
supports LDA, GGA, meta-GGA, and hybrid functionals. Apart from single-point calculations, the package allows ge-
ometry optimizations and ab-initio molecular dynamics with various ensembles. The package also provides a variety of
advanced functionalities for simulating materials, including the DFT+U, VdW corrections, and implicit solvation model,
etc. In addition, ABACUS strives to provide a general infrastructure to facilitate the developments and applications of
novel machine-learning-assisted DFT methods (DeePKS, DP-GEN, DeepH, etc.) in molecular and material simulations.

QUICK START 1

CHAPTER
ONE

EASY INSTALLATION

This guide helps you install ABACUS with basic features. For DeePKS, DeePMD and Libxc support, or building
with make, please refer to the advanced installation guide after going through this page. We recommend building
ABACUS with cmake to avoid dependency issues. We recommend compiling ABACUS(and possibly its requirements)
from the source code using the latest compiler for the best performace. You can also deploy ABACUS without building
by Docker or conda. Please note that ABACUS only supports Linux; for Windows users, please consider using WSL or
docker.

1.1 Prerequisites

To compile ABACUS, please make sure that the following prerequisites are present:
¢ CMake >=3.16.
¢ C++ compiler, supporting C++11. You can use Intel® C++ compiler or GCC.
GCC version 5 or later is always required. Intel compilers also use GCC headers and libraries(ref).
¢ MPI library. The recommended versions are Intel MPI, MPICH or Open MPI.

* Fortran compiler if you are building BLAS, LAPACK, ScaLAPACK, and ELPA from source file. You can use
Intel® Fortran Compiler or GFortran.

* BLAS. You can use OpenBLAS.
* LAPACK.
* FFTW3.

These requirements support the calculation of plane-wave basis in ABACUS. For LCAO basis calculation, additional
components are required:

¢ ScaLAPACK.
« CEREAL.
e ELPA >=2017 (optional).

https://learn.microsoft.com/en-us/windows/wsl/
https://cmake.org/
https://software.intel.com/enus/c-compilers
https://gcc.gnu.org/
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compatibility-and-portability/gcc-compatibility-and-interoperability.html#gcc-compatibility-and-interoperability_GUID-52CB6FE0-83DA-4028-9EF4-0DFAF1652736
https://software.intel.com/enus/mpi-library
https://www.mpich.org/
https://www.open-mpi.org/
https://www.intel.com/content/www/us/en/developer/tools/oneapi/fortran-compiler.html
https://gcc.gnu.org/fortran/
http://www.netlib.org/blas/
https://www.openblas.net/
http://www.netlib.org/lapack/
http://www.fftw.org/
http://www.netlib.org/scalapack/
https://uscilab.github.io/cereal/
https://elpa.mpcdf.mpg.de/

ABACUS

1.2 Install requirements

Some of these packages can be installed with popular package management system, such as apt and yum:

sudo apt update && sudo apt install -y libopenblas-openmp-dev liblapack-dev.
—libscalapack-mpi-dev libelpa-dev libfftw3-dev libcereal-dev libxc-dev g++ make.
—cmake bc git

Installing ELPA by apt only matches requirements on Ubuntu 22.04. For earlier linux distributions, you
should build ELPA from source.

We recommend Intel® oneAPI toolkit (former Intel® Parallel Studio) as toolchain. The Intel® oneAPI Base Toolkit
contains Intel® oneAPI Math Kernel Library (aka MKL), including BLAS, LAPACK, ScaLAPACK and FFTW3. The
Intel® one API HPC Toolkit contains Intel® MPI Library, and C++ compiler(including MPI compiler).

Please note that building e 1pa with a different MPI library may cause conflict. Don’t forget to set envi-
ronment variables before you start! cmake will use Intel MKL if the environment variable MKLROOT is
set.

Please refer to our guide on installing requirements.

1.3 Install requirements by toolchain

We offer a set of toolchain scripts to compile and install all the requirements automatically and suitable for machine
characteristic in an online or offline way. The toolchain can be downloaded with ABACUS repo, which is easily used
and can have a convenient installation under HPC environment in both GNU or Intel-oneAPI toolchain. Sometimes,
ABACUS by toolchain installation may have highly efficient performance. A Tutorial for using this toolchain can be
accessed in bohrium-notebook

Notice: the toolchain is under development, please let me know if you encounter any problem in using this
toolchain.

1.4 Get ABACUS source code

Of course a copy of ABACUS source code is required, which can be obtained via one of the following choices:

e Clone the whole repo with git: git clone https://github.com/deepmodeling/
abacus-develop.git

* Clone the minimum required part of repo: git clone https://github.com/deepmodeling/
abacus-develop.git —--depth=1

e Download the latest source code without git: wget https://github.com/deepmodeling/
abacus—-develop/archive/refs/heads/develop.zip

¢ Get the source code of a stable version here

» If you have connection issues accessing GitHub, please try out our official Gitee repo: e.g. git clone https:/
/gitee.com/deepmodeling/abacus—-develop.git

1.2. Install requirements 3

https://software.intel.com/content/www/us/en/develop/tools/oneapi/commercial-base-hpc.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/all-toolkits.html#base-kit
https://software.intel.com/content/www/us/en/develop/tools/oneapi/all-toolkits.html#hpc-kit
https://software.intel.com/content/www/us/en/develop/documentation/get-started-with-intel-oneapi-render-linux/top/configure-your-system.html
https://software.intel.com/content/www/us/en/develop/documentation/get-started-with-intel-oneapi-render-linux/top/configure-your-system.html
https://github.com/deepmodeling/abacus-develop/wiki/Building-and-Running-ABACUS
https://github.com/deepmodeling/abacus-develop/tree/develop/toolchain
https://nb.bohrium.dp.tech/detail/5215742477
https://github.com/deepmodeling/abacus-develop/releases
https://gitee.com/deepmodeling/abacus-develop/

ABACUS

1.4.1 Update to latest release

Please check the release page for the release note of a new version.
It is OK to download the new source code from beginning following the previous step.

To update your cloned git repo in-place:

git remote -v

Check if the output contains the line below

origin https://github.com/deepmodeling/abacus—-develop.git (fetch)

The remote name is marked as "upstream" if you clone the repo from your own fork.

Replace "origin" with "upstream" or the remote name corresponding to deepmodeling/
—abacus-develop 1f necessary

git fetch origin

git checkout v3.2.0 # Replace the tag with the latest version

git describe --tags # Verify if the tag has been successfully checked out

Then proceed to the Build and Install part. If you encountered errors, try remove the build directory first and recon-
figure.

To use the codes under active development:

git checkout develop
git pull

1.5 Configure

The basic command synopsis is:

cd abacus—-develop
cmake -B build [-D <var>=<value>]

Here, ‘build’ is the path for building ABACUS; and *-D’ is used for setting up some variables for CMake indicating optional
components or requirement positions.

* CMAKE_INSTALL_PREFIX: the path of ABACUS binary to install; /usr/local/bin/abacus by default
¢ Compilers

— CMAKE_CXX_COMPILER: C++ compiler; usually g++(GNU C++ compiler) or i cpx(Intel C++ compiler).
Can also set from environment variable CXX. It is OK to use MPI compiler here.

— MPI_CXX_COMPILER: MPI wrapper for C++ compiler; usually mpicxx or mpiicpc(for Intel MPI).
¢ Requirements: Unless indicated, CMake will try to find under default paths.

— MKLROOT: If environment variable MKLROOT exists, cmake will take MKL as a preference, i.e. not us-
ing LAPACK, ScaLAPACK and FFTW. To disable MKL, unset environment variable MKLROOT, or pass
—-DMKLROOT=OFF to cmake.

— LAPACK_DIR: Path to OpenBLAS library 1 ibopenblas . so(including BLAS and LAPACK)
— SCALAPACK_DIR: Path to ScaLAPACK library libscalapack.so

— ELPA_DIR: Path to ELPA install directory; should be the folder containing ‘include’ and ‘lib’.

1.5. Configure 4

https://github.com/deepmodeling/abacus-develop/releases

ABACUS

Note: If you install ELPA from source, please add a symlink to avoid the additional include file folder
with version name: 1n —-s elpa/include/elpa-2021.05.002/elpa elpa/include/
elpa. This is a known behavior of ELPA.

FFTW3_DIR: Path to FFTW3.

CEREAL_INCLUDE_DIR: Path to the parent folder of cereal/cereal.hpp. Will download from
GitHub if absent.

Libxc_DIR: (Optional) Path to Libxc.

Note: Building Libxc from source with Makefile does NOT support using it in CMake here. Please
compile Libxc with CMake instead.

LIBRI_DIR: (Optional) Path to LibRI

LIBCOMM_DIR: (Optional) Path to LibComm.

¢ Components: The values of these variables should be ‘ON’, ‘1’ or ‘OFF’, ‘0’. The default values are given below.

ENABLE_LCAO=0N: Enable LCAO calculation. If SCALAPACK, ELPA or CEREAL is absent and only
require plane-wave calculations, the feature of calculating LCAO basis can be turned off.

ENABLE_LIBXC=OFF: Enable Libxc to suppport variety of functionals. If Libxc_DIR is defined, EN-
ABLE_LIBXC will set to ‘ON’.

ENABLE_LIBRI=OFF: Enable LibRI to suppport variety of functionals. If LIBRI_DIR and LIB-
COMM_D1IR is defined, ENABLE_LIBRI will set to ‘ON’.

USE_OPENMP=0N: Enable OpenMP support. Building ABACUS without OpenMP is not fully tested yet.
BUILD_TESTING=OFF: Build unit tests.

ENABLE_MP I=ON: Enable MPI parallel compilation. If set to OFF, a serial version of ABACUS with PW
basis only will be compiled. Currently serial version of ABACUS with LCAO basis is not supported yet, so
ENABLE_LCAO will be automatically set to OFF.

ENABLE_COVERAGE=0FF: Build ABACUS executable supporting coverage analysis. This feature has a
drastic impact on performance.

ENABLE_ASAN=OFF: Build with Address Sanitizer. This feature would help detecting memory problems.
Only supports GCC.

USE_ELPA=0ON: Use ELPA library in LCAO calculations. If this value is set to OFF, ABACUS can be
compiled without ELPA library.

Here is an example:

CXX=mpiicpc cmake -B build -DCMAKE_INSTALL_PREFIX=~/abacus -DELPA_DIR=~/elpa-2016.05.
<5004 /build -DCEREAL_INCLUDE_DIR=~/cereal/include

1.6 Build and Install

After configuring, build and install by:

cmake —--build build -j nproc’
cmake --install build

You can change the number after —j on your need: set to the number of CPU cores(nproc) to reduce compilation time.

1.6. Build and Install 5

ABACUS

1.7 Run

If ABACUS is installed into a custom directory using CMAKE_INSTALL_PREF IX, please add it to your environment
variable PATH to locate the correct executable.

[export PATH=/my-install-dir/:S$PATH]

Please set OpenMP threads by setting environment variable:

[export OMP_NUM_THREADS=1]

Enter a directory containing a INPUT file. Please make sure structure, pseudo potential, or orbital files indicated by
INPUT is at the correct location.

[cd abacus—-develop/examples/force/pw_Si2]

Use 4 MPI processes to run, for example:

[mpirun -n 4 abacus]

The total thread count(i.e. OpenMP per-process thread count * MPI process count) should not exceed the
number of cores in your machine.

Please refer to hands-on guide for more instructions.

Note: Some Intel CPU has a feature named Hyper-Threading(HT). This feature enables one physical core
switch fastly between two logical threads. It would benefits from I/O bound tasks: when a thread is blocked by
1/0, the CPU core can work on another thread. However, it helps little on CPU bound tasks, like ABACUS
and many other scientific computing softwares. We recommend using the physical CPU core number. To
determine if HT is turned on, execute 1scpu | grep 'per core' and see if ‘Thread(s) per core’ is
2.

1.8 Container Deployment

Please note that containers target at developing and testing, but not massively parallel computing for produc-
tion. Docker has a bad support to MPI, which may cause performance degradation.

We've built a ready-for-use version of ABACUS with docker here. For a quick start: pull the image, prepare the data,
run container. Instructions on using the image can be accessed in Dockerfile. A mirror is available by docker pull
registry.dp.tech/deepmodeling/abacus.

We also offer a pre-built docker image containing all the requirements for development. Please refer to our Package Page.

The project is ready for VS Code development container. Please refer to Developing inside a Container. Choose Open
a Remote Window —-> Clone a Repository in Container Volume in VS Code command palette,
and put the git address of ABACUS when prompted.

For online development environment, we support GitHub Codespaces: Create a new Codespace

We also support Gitpod: Open in Gitpod

1.7. Run 6

https://github.com/deepmodeling/abacus-develop/pkgs/container/abacus
https://github.com/orgs/deepmodeling/packages?repo_name=abacus-develop
https://code.visualstudio.com/docs/remote/containers#_quick-start-try-a-development-container
https://github.com/deepmodeling/abacus-develop.git
https://github.com/codespaces
https://github.com/codespaces/new?machine=basicLinux32gb&repo=334825694&ref=develop&devcontainer_path=.devcontainer%2Fdevcontainer.json&location=SouthEastAsia
https://www.gitpod.io/
https://gitpod.io/#https://github.com/deepmodeling/abacus-develop

ABACUS

1.9 Install by conda

Conda is a package management system with a separated environment, not requiring system privileges. A pre-built
ABACUS binary with all requirements is available at conda-forge. Conda will install the GPU-accelerated version of
ABACUS if a valid GPU driver is present.

Install
We recommend installing ABACUS in a new environment to avoid potential conflicts:
conda create -n abacus_env abacus -c conda-forge

Run
conda activate abacus_env
OMP_NUM_THREADS=1 mpirun -n 4 abacus

Update
conda update -n abacus_env abacus -c conda-forge

For more details on building a conda package of ABACUS, please refer to the conda recipe file.

Note: The deepmodeling conda channel offers historical versions of ABACUS.

1.9. Install by conda 7

https://anaconda.org/conda-forge/abacus
https://github.com/deepmodeling/abacus-develop/blob/develop/conda/meta.yaml
https://anaconda.org/deepmodeling/abacus

CHAPTER
TWO

TWO QUICK EXAMPLES

2.1 Running SCF Calculation

2.1.1 A quick LCAO example

ABACUS is well known for its support of LCAO (Linear Combination of Atomic Orbital) basis set in calculating periodic
condensed matter systems, so it’s a good choice to start from a LCAO example of self-consistent field (SCF) calculation.
Here, FCC MgO has been chosen as a quick start example. The default name of a structure file in ABACUS is STRU.
The STRU file for FCC MgO in a LCAO calculation is shown below:

#This is the atom file containing all the information
#about the lattice structure.

ATOMIC_SPECIES
Mg 24.305 Mg_ONCV_PBE-1.0.upf # element name, atomic mass, pseudopotential file
O 15.999 O_ONCV_PBE-1.0.upf

NUMERICAL_ORBITAL
Mg_gga_8au_100Ry_4s2pld.orb
O_gga_B8au_100Ry_2s2pld.orb

LATTICE_CONSTANT
1.8897259886 # 1.8897259886 Bohr = 1.0 Angstrom

LATTICE_VECTORS

4.25648 0.00000 0.00000
0.00000 4.25648 0.00000
0.00000 0.00000 4.25648

ATOMIC_POSITIONS

Direct #Cartesian (Unit is LATTICE_CONSTANT)
Mg #Name of element

0.0 #Magnetic for this element.

4 #Number of atoms

0.0 0.0 0.0 O0OO #x,y,z, move_x, move_y, mOvVe_z
0.0 0.5 0.5 00O #x,v, 2z, move_x, move_y, move_Zz
0.5 0.0 0.5 00O #x,y,z, move_x, move_y, move_z
0.5 0.5 0.0 00O #x,y,z, move_x, move_y, move_z
¢) #Name of element

0.0 #Magnetic for this element.

4 #Number of atoms

0.5 0.0 0.0 00O #x,v, 2z, move_x, move_y, move_z
0.5 0.5 0.5 00O #x,y,z, move_x, move_y, move_z

(continues on next page)

ABACUS

(continued from previous page)

0.0 0.0 0.5 00O #x,v, 2z, move_x, move_y, move_Zz
0.0 0.5 0.0 00O #x,y,z, move_x, move_y, move_z

Next, the INPUT file is required, which sets all key parameters to direct ABACUS how to calculte and what to output:

INPUT_PARAMETERS

suffix MgO

ntype 2

pseudo_dir ./

orbital_dir ./

ecutwfc 100 # Rydberg

scf_thr le-4 # Rydberg

basis_type lcao

calculation scf # this is the key parameter telling abacus.

—to do a scf calculation

The pseudopotential files of Mg_ONCV_PBE-1.0.upf and O_ONCV_PBE-1.0.upf should be provided
under the directory of pseudo_dir, and the orbital files Mg_gga_8au_100Ry_4s2pld.orb and
O_gga_8au_100Ry_2s2pld.orb under the directory of orbital_dir. The pseudopotential and orbital
files can be downloaded from the ABACUS website.

The final mandatory input file is called KP T, which sets the reciprocal space k-mesh. Below is an example:

K_POINTS

0

Gamma
444000

After all the above input files have been set, one should be able to run the first quick example. The simplest way is to use
the command line, e.g.:

[mpirun -np 2 abacus

The main output information is stored in the file OUT .MgO/running_scf . log, which starts with

WELCOME TO ABACUS v3.2
'Atomic-orbital Based Ab-initio Computation at UStc'
Website: http://abacus.ustc.edu.cn/

Version: Parallel, in development
Processor Number is 2
Start Time is Mon Oct 24 01:47:54 2022

READING GENERAL INFORMATION
global_out_dir = OUT.MgO/
global_in_card = INPUT

pseudo_dir =
orbital_dir =
DRANK =
DSIZE =
DCOLOR =
GRANK =
GSIZE =

B RN

(continues on next page)

2.1. Running SCF Calculation 9

http://abacus.ustc.edu.cn/pseudo/list.htm

ABACUS

(continued from previous page)

The esolver type has been set to : ksdft_lcao

SO 5OO5S55O5S55O55O5O55O5555SO5555555555555555555555555>>

\ \
| Reading atom information in unitcell:
| From the input file and the structure file we know the number of |
| different elments in this unitcell, then we list the detail |
| information for each element, especially the zeta and polar atomic |
| orbital number for each element. The total atom number is counted. |
| We calculate the nearest atom distance for each atom and show the |
| Cartesian and Direct coordinates for each atom. We list the file |
| address for atomic orbitals. The volume and the lattice vectors |
| in real and reciprocal space is also shown.
\ \
<

<L LLLLLLLLLLLLLLLLLLLLLLL L L L L L L L L LKL L L L L L L L L L L L L L L L L Ll Lk«

2.1.2 A quick PW example

In order to run a SCF calculation with PW (Plane Wave) basis set, one has only to change the tag basis_type from
lcao to pw in the INPUT file, and no longer needs to provide orbital files under NUMERICAL_ORBITAL in the STRU
file.

The INPUT file follows as:

INPUT_PARAMETERS

suffix MgO

ntype 2

pseudo_dir o

ecutwfc 100 # Rydberg

scf_thr le-4 # Rydberg

basis_type pw # changes the type of basis set

calculation scf # this is the key parameter telling abacus.

—~to do a scf calculation

And the STRU file will be:

#This is the atom file containing all the information
#about the lattice structure.

ATOMIC_SPECIES

Mg 24.305 Mg_ONCV_PBE-1.0.upf # element name, atomic mass, pseudopotential file
O 15.999 O_ONCV_PBE-1.0.upf

(continues on next page)

2.1. Running SCF Calculation 10

ABACUS

(continued from previous page)

LATTICE_CONSTANT
1.8897259886 # 1.8897259886 Bohr = 1.0 Angstrom

LATTICE_VECTORS

4.25648 0.00000 0.00000
0.00000 4.25648 0.00000
0.00000 0.00000 4.25648

ATOMIC_POSITIONS

Direct #Cartesian (Unit 1s LATTICE_CONSTANT)
Mg #Name of element

0.0 #Magnetic for this element.

4 #Number of atoms

0.0 0.0 0.0 O0O0OO #x,y, 2z, move_x, move_y, move_z
0.0 0.5 0.5 00O #x,v, 2z, move_x, move_y, move_Zz
0.5 0.0 0.5 00O #x,y,z, move_x, move_y, move_Zz
0.5 0.5 0.0 00O #x,y,2z, move_x, move_y, move_z
6] #Name of element

0.0 #Magnetic for this element.

4 #Number of atoms

0.5 0.0 0.0 O0O0O #x,v,2Z, move_x, move_y, move_z
0.5 0.5 0.5 00O #x,yv, 2z, move_x, move_y, move_z
0.0 0.0 0.5 00O #x,y, 2z, move_x, move_y, move_z
0.0 0.5 0.0 00O #x,v,2Z, move_x, move_y, move_Zz

Use the same pseudopotential and KPT files as the above LCAO example. The final total energy will be output:

2.2 Running Geometry Optimization

In order to run a full geometry optimization in ABACUS, the tag calculation in INPUT should be set to
cell-relax. In addition, the convergence criteria for atomics force and cell stress can be set through the tags
force_thr_evand stress_thr, respectively. The maximum number of ionc steps is controlled by relax_nmax.

2.2.1 A quick LCAO example

The INPUT is provided as follows:

INPUT_PARAMETERS

suffix MgO

ntype 2

nelec 0.0

pseudo_dir ./

orbital_dir ./

ecutwfc 100 # Rydberg

scf_thr le-4 # Rydberg

basis_type lcao

calculation cell-relax # this is the key parameter telling abacus.

—to do a optimization calculation
(continues on next page)

2.2. Running Geometry Optimization 11

ABACUS

(continued from previous page)

force_thr_ev 0.01 # the threshold of the force.
—convergence, 1in unit of eV/Angstrom

stress_thr 5 # the threshold of the stress convergence,.
—1in unit of kBar

relax_nmax 100 # the maximal number of ionic iteration.
—~Steps

out_stru 1

Use the same KPT, STRU, pseudopotential, and orbital files as in the above SCF-LCAO example. The final optimized
structure can be found in STRU_NOW. cif and OUT .MgO/running_cell-relax.log.

2.2.2 A quick PW example

The INPUT is provided as follows:

INPUT_PARAMETERS

suffix MgO

ntype 2

nelec 0.0

pseudo_dir ./

ecutwfc 100 # Rydberg

scf_thr le-4 # Rydberg

basis_type ow

calculation cell-relax # this is the key parameter telling abacus.
—to do a optimization calculation

force_thr_ev 0.01 # the threshold of the force.
—convergence, 1in unit of eV/Angstrom

stress_thr 5 # the threshold of the stress convergence,.
—1in unit of kBar

relax_nmax 100 # the maximal number of ionic iteration.
—~steps

out_stru 1

Use the same KPT, STRU, and pseudopotential files as in the above SCF-PW examples. The final optimized structure
can be found in STRU_NOW. cif and OUT.MgO/running_cell-relax.log.

2.2. Running Geometry Optimization 12

CHAPTER
THREE

BRIEF INTRODUCTION OF THE INPUT FILES

The following files are the central input files for ABACUS. Before executing the program, please make sure these files
are prepared and stored in the working directory. Here we give some simple descriptions XXX. For more details, users
should consult the Advanced session.

3.1 INPUT

The INPUT file contains parameters that control the type of calculation as well as a variety of settings.

Below is an example INPUT file with some of the most important parameters that need to be set:

INPUT_PARAMETERS

suffix MgO

ntype 2

pseudo_dir ol

orbital_dir ./

ecutwfc 100 # Rydberg

scf_thr le-4 # Rydberg

basis_type lcao

calculation scf # this is the key parameter telling abacus.
—to do a scf calculation

out_chg True

The parameter list always starts with key word INPUT_PARAMETERS. Any content before INPUT_PARAMETERS will
be ignored.

Any line starting with # or / will also be ignored.

Each parameter value is provided by specifying the name of the input variable and then putting the value after the name,
separated by one or more blank characters(space or tab). The following characters (> 150) in the same line will be
neglected.

Depending on the input variable, the value may be an integer, a real number or a string. The parameters can be given in
any order, but only one parameter should be given per line.

Furthermore, if a given parameter name appeared more than once in the input file, only the last value will be taken.
Note: if a parameter name is not recognized by the program, the program will stop with an error message.
In the above example, the meanings of the parameters are:
* suffix: the name of the system, default ABACUS
e ntype : how many types of elements in the unit cell

e pseudo_dir : the directory where pseudopotential files are provided

13

ABACUS

e orbital_dir : the directory where orbital files are provided

e ecutwfc : the plane-wave energy cutoff for the wave function expansion (UNIT: Rydberg)
* scf_thr : the threshold for the convergence of charge density (UNIT: Rydberg)

* basis_type : the type of basis set for expanding the electronic wave functions

e calculation : the type of calculation to be performed by ABACUS

e out_chg: if true, output thee charge density oon real space grid

For a complete list of input parameters, please consult this instruction.

Note: Users cannot change the filename “INPUT” to other names. Boolean paramerters such as out_chg
can be set by using True and False, 1 and 0, or T and F. It is case insensitive so that other preferences
such as true and false, TRUE and FALSE, and t and f for setting boolean values are also supported.

3.2 STRU

The structure file contains structural information about the system, e.g., lattice constant, lattice vectors, and positions of

the atoms within a unit cell. The positions can be given either in direct or Cartesian coordinates.

An example of the STRU file is given as follows :

#This is the atom file containing all the information
#about the lattice structure.

ATOMIC_SPECIES

Mg 24.305 Mg_ONCV_PBE-1.0.upf # element name, atomic mass, pseudopotential file

O 15.999 O_ONCV_PBE-1.0.upf

NUMERICAL_ORBITAL
Mg_gga_8au_100Ry_4s2pld.orb
O_gga_8au_100Ry_2s2pld.orb

LATTICE_CONSTANT
1.8897259886 # 1.8897259886 Bohr = 1.0 Angstrom

LATTICE_VECTORS

4.25648 0.00000 0.00000
0.00000 4.25648 0.00000
0.00000 0.00000 4.25648

ATOMIC_POSITIONS
Direct #Cartesian (Unit is LATTICE_CONSTANT)

Mg #Name of element

0.0 #Magnetic for this element.

4 #Number of atoms

0.0 0.0 0.0 O0O0OO #x,y,z, move_x, move_y, move_z
0.0 0.5 0.5 00O #x,y,z, move_xX, move_y, movVe_z
0.5 0.0 0.5 00O #x,v, 2z, move_x, move_y, move_z
0.5 0.5 0.0 00O #x,y,z, move_x, move_y, move_z
0 #Name of element

0.0 #Magnetic for this element.

4 #Number of atoms

0.5 0.0 0.0 O0O0OO #x,y,z, move_x, move_y, mMOVe_ZzZ
0.5 0.5 0.5 00O #x,v, 2z, move_x, move_y, move_Zz

(continues on next page)

3.2. STRU

14

ABACUS

(continued from previous page)

0.0 0.0 0.5 00O #x,v, 2z, move_x, move_y, move_Zz
0.0 0.5 0.0 00O #x,y,z, move_x, move_y, move_z

Note: users may choose a different name for their structure file using the keyword st ru_file. The order
of the pseudopotential file list and the numerical orbital list (if LCAO is applied) MUST be consistent with
that of the atomic type given in ATOMIC_POSITIONS.

For a more detailed description of STRU file, please consult /ere.

3.3 KPT

This file contains information of the kpoint grid setting for the Brillouin zone sampling.

An example of the KPT file is given below:

K_POINTS

0

Gamma

4 4 4000

Note: users may choose a different name for their k-point file using keyword kpoint_file
For a more detailed description, please consult /ere.
» The pseudopotential files

Norm-conserving pseudopotentials are used in ABACUS, in the UPF file format.The filename of each element’s
pseudopotential needs to be specified in the STRU file, together with the directory of the pseudopotential files
unless they are already present in the working directory.

More information on pseudopotentials is given /ere.
* The numerical orbital files

This part is only required in LCAO calculations. The filename for each element’s numerical orbital basis needs to
be specified in the STRU file, together with the directory of the orbital files unless they are already present in the
working directory. ABACUS provides numerical atomic basis sets of different accuracy levels for most elements
commonly used. Users can download these basis sets from the website. Moreover, users can generate numerical
atomic orbitals by themselves, and the procedure is provided in this short introduction.

3.3. KPT 15

http://abacus.ustc.edu.cn/pseudo/list.htm

CHAPTER
FOUR

ADVANCED INSTALLATION OPTIONS

This guide helps you install ABACUS with advanced features. Please make sure to read the easy-installation guide before.

4.1 Build with Libxc

ABACUS use exchange-correlation functionals by default. However, for some functionals (such as HSE hybrid func-
tional), Libxc is required.

Dependency: Libxc >=5.1.7 .

Note: Building Libxc from source with Makefile does NOT support using it in CMake here. Please compile
Libxc with CMake instead.

If Libxc is not installed in standard path (i.e. installed with a custom prefix path), you can set Libxc_DIR to the
corresponding directory.

[cmake -B build -DLibxc_DIR=~/libxc

4.2 Build with DeePKS

If DeePKS feature is required for DeePKS-kit, the following prerequisites and steps are needed:
¢ C++ compiler, supporting C++14 (GCC >= 5 is sufficient)
e CMake >=3.18
e LibTorch with cxx11 ABI supporting CPU
* Libnpy

cmake -B build -DENABLE_DEEPKS=1 -DTorch_DIR=~/libtorch/share/cmake/Torch/ -Dlibnpy_
—INCLUDE_DIR=~/libnpy/include

CMake will try to download Libnpy if it cannot be found locally.

16

https://tddft.org/programs/libxc/
https://github.com/deepmodeling/deepks-kit
https://pytorch.org/
https://github.com/llohse/libnpy/

ABACUS

4.3 Build with DeePMD-kit

Note: This part is only required if you want to load a trained DeeP Potential and run molecular dynamics
with that. To train the DeeP Potential with DP-GEN, no extra prerequisite is needed and please refer to this
page for ABACUS interface with DP-GEN.

If the Deep Potential model is employed in Molecule Dynamics calculations, the following prerequisites and steps are
needed:

¢ DeePMD-kit

¢ TensorFlow

[cmake -B build -DDeePMD_DIR=~/deepmd-kit —-DTensorFlow_DIR=~/tensorflow

deepmd_c/deepmd_cc and tensorflow_cc libraries would be called according to DeePMD_DIR
and TensorFlow_DIR, which is showed in detail in this page.

4.4 Build with LibRI and LibComm

The new EXX implementation depends on two external libraries:
e LibRI
e LibComm

These two libraries are added as submodules in the deps folder. Set —-DENABLE_LIBRI=ON to build with these two
libraries.

If you prefer using manually downloaded libraries, provide -DLIBRI_DIR=${path to your LibRI folder}
-DLIBCOMM_DIR=${path to your LibComm folder}.

4.5 Build Unit Tests

To build tests for ABACUS, define BUILD_TESTING flag. You can also specify path to local installation of Googletest
by setting GTEST_DIR flags. If not found in local, the configuration process will try to download it automatically.

[cmake -B build -DBUILD_TESTING=1

After building and installing, unit tests can be performed with ctest.

To run a subset of unit test, use ctest -R <test-match-pattern> to perform tests with name matched by given
pattern.

4.3. Build with DeePMD-kit 17

http://abacus.deepmodeling.com/en/latest/advanced/interface/dpgen.html
http://abacus.deepmodeling.com/en/latest/advanced/interface/dpgen.html
https://github.com/deepmodeling/deepmd-kit
https://www.tensorflow.org/
https://github.com/deepmodeling/deepmd-kit/blob/master/doc/inference/cxx.md
https://github.com/abacusmodeling/LibRI
https://github.com/abacusmodeling/LibComm
https://github.com/deepmodeling/abacus-develop/tree/develop/deps
https://github.com/google/googletest

ABACUS

4.6 Build with CUDA support

4.6.1 Extra prerequisites

¢ CUDA-Toolkit

To build NVIDIA GPU support for ABACUS, define USE_CUDA flag. You can also specify path to local installation of
CUDA Toolkit by setting CMAKE_CUDA_ COMP ILER flags.

[cmake -B build -DUSE_CUDA=1 -DCMAKE_CUDA_COMPILER=S{path to cuda toolkit }/bin/nvcc

4.7 Build math library from source

Note: This flag is enabled by default. It will get better performance than the standard implementation on
gcc and clang. But it will be disabled when using Intel Compiler since the math functions will get
wrong results and the performance is also unexpectly poor.

To build math functions from source code, instead of using c++ standard implementation, define USE_ABACUS_LIBM
flag.

Currently supported math functions: sin, cos, sincos, exp, cexp

[Cmake -B build -DUSE_ABACUS_LIBM=1

4.8 Build ABACUS with make

Note: We suggest using CMake to configure and compile.

To compile the ABACUS program using legacy make, users need to specify the location of the compilers, headers and
libraries in source/Makefile.vars:

This is the Makefile of ABACUS API

fmmmmmmmmmmmmm e e e
Users set
R
CXX = mpiicpc

mpiicpc: compile intel parallel version

icpc: compile intel sequential version

make: ELPA_DIR, ELPA_INCLUDE_DIR, CEREAL_DIR must also be set.

make pw: nothing need to be set except LIBXC_DIR

#

mpicxx: compile gnu parallel version

gtt: compile gnu sequential version

make: FFTW_DIR, OPENBLAS LIB DIR, SCALAPACK_LIB DIR, ELPA_DIR, ELPA_INCLUDE_DIR,.

—~CEREAL_DIR must also be set.
make pw: FFTW_DIR, OPENBLAS LIB_DIR must be set.

GPU = OFF #We do not support GPU yet
OFF: do not use GPU
CUDA: use CUDA

(continues on next page)

4.6. Build with CUDA support 18

https://developer.nvidia.com/cuda-toolkit

ABACUS

(continued from previous page)

fomm FOR INTEL COMPILER ———=———————————————————
ELPA _DIR should contain an include folder and lib/libelpa.a
CEREAIL_DIR should contain an include folder.

__
ELPA_DIR = /usr/local/include/elpa-2021.05.002

ELPA_INCLUDE_DIR = S{ELPA_DIR}/elpa

CEREAL_DIR = /usr/local/include/cereal
e FOR GNU COMPTLER —————————————
FFTW_DIR should contain lib/libfftw3.a.

OPENBLAS_LIB_DIR should contain libopenblas.a.
SCALAPACK_LIB _DIR should contain libscalapack.a
All three above will only be used when CXX=mpicxx or g++

ELPA DIR should contain an include folder and lib/libelpa.a
CEREAI_DIR should contain an include folder.

i =————=———=—=—==—===
FFTW_DIR = /public/soft/fftw_3.3.8

OPENBLAS_LIB_DIR = /public/soft/openblas/lib

SCALAPACK_LIB DIR = /public/soft/openblas/lib

ELPA_DIR = /public/soft/elpa_21.05.002

ELPA_INCLUDE DIR = S${ELPA_DIR}/include/elpa-2021.05.002

CEREAI_DIR = /public/soft/cereal

e OPTIONAL LIBS ————————————m

To use DEEPKS: set LIBTORCH_DIR and LIBNPY DIR

To use LIBXC: set LIBXC DIR which contains include and lib/libxc.a (>5.1.7)
To use DeePMD: set DeePMD DIR and TensorFlow_ DIR

To use LibRI: set LIBRI_DIR and LIBCOMM DIR

e ==—==——==—==
LIBTORCH DIR = /usr/local

LIBNPY DIR = /usr/local

LIBXC_DIR = /public/soft/libxc

DeePMD_DIR = S{deepmd_root}
TensorFlow _DIR = S{tensorflow_root}

LIBRI_DIR = /public/software/LibRI
LIBCOMM_DIR /public/software/LibComm

e e

NP = 14 # It is not supported. use make —-jl4 or make -j to parallelly compile
DEBUG = OFF

Only for developers

ON: use gnu compiler and check segmental defaults

OFF: nothing

4.8. Build ABACUS with make 19

ABACUS

For example, below is a case where the Intel C++ compiler, Intel MPI and CEREAL are used, along with Intel MKL
library. The file Makefile.vars can be set as follows:

CXX = mpiicpc #(or CXX = icpc)

ELPA_DIR = /public/soft/elpa_21.05.002
ELPA_INCLUDE_DIR = ELPA_DIR}/include/elpa-2021.05.002
CEREAL_DIR = /public/soft/cereal

When CXX=mpiicpc, a parallel version will be compiled. When CXX=1cpc, a sequential version will be compiled.

Another example is where the Gnu C++ compiler, MPICH, OPENBLAS, ScaLAPACK, ELPA and CEREAL are used:

CXX = mpicxx/g++
FFTW_DIR = /public/soft/fftw_3.3.8

El S_LIB_DIR = /public/soft/openblas/1lib

ALAPACK_LIB_DIR = /public/soft/openblas/lib
ELPA_DIR = /public/soft/elpa_21.05.002
ELPA_INCLUDE_DIR = ELPA_DIR}/include/elpa-2021.05.002
CEREAL_DIR = /public/soft/cereal

When CXX=mpicxx, a parallel version will be compiled. When CXX=g++, a sequential version will be compiled.

Except modifying Makefile.vars, you can also directly use

CXX=mpiicpc ELPA_DIR=/public/soft/elpa_21.05.002 \
ELPA_INCLUDE_DIR=S{ELPA_DIR}/include/elpa-2021.05.002 \
CEREAL_DIR=/public/soft/cereal

ABACUS now support full version and pw version. Use make or make abacus to compile full version which supports
LCAO calculations. Use make pw to compile pw version which only supports pw calculations. For pw version, make
pw CXX=mpiicpc,youdo notneed to provide any libs. For make pw CXX=mpicxx, youneed provide FFTW_DIR
and OPENBLAS_LIB_DIR.

Besides, libxc and deepks are optional libs to compile abacus. They will be used when LIBXC_DIR is defined like

{LIBXCJ IR = /public/soft/libxc

or LIBTORCH_DIR and LIBNPY_DIR like

= /usr/local
/usr/local

After modifying the Makefile.vars file, execute make or make —3j12 to build the program.

After the compilation finishes without error messages (except perhaps for some warnings), an executable program
ABACUS .mpi will be created in directory bin/.

4.8.1 Add Libxc Support

The program compiled using the above instructions do not link with LIBXC and use exchange-correlation functionals as
written in the ABACUS program. However, for some functionals (such as HSE hybrid functional), LIBXC is required.

To compile ABACUS with LIBXC, you need to define LIBXC_DIR in the file Makefile.vars or use

[N@Ha LIBXC_DIR=/pulic/soft/libxc

directly.

4.8. Build ABACUS with make 20

ABACUS

4.8.2 Add DeePKS Support

To compile ABACUS with DEEPKS, you need to define LIBTORCH_DIR and LIBNPY_DIRin the file Makefile.
vars or use

@55 LIBTORCH_DIR=/opt/libtorch/ LIBNPY_DIR=/opt/libnpy/

directly.

4.8.3 Add DeePMD-kit Support

Note: This part is only required if you want to load a trained DeeP Potential and run molecular dynamics
with that. To train the DeeP Potential with DP-GEN, no extra prerequisite is needed and please refer to this
page for ABACUS interface with DP-GEN.

To compile ABACUS with DeePMD-kit, you need to define DeePMD_DIR and TensorFlow_DIR in the file
Makefile.vars oruse

ﬂaa DeePMD_DIR=~/deepmd-kit TensorFlow_DIR=~/tensorflow

directly.

deepmd_c/deepmd_cc and tensorflow_cc libraries would be called according to DeePMD_DIR
and TensorFlow_DIR, which is showed in detail in this page.

4.8.4 Add LibRI and LibComm Support

To use new EXX, you need two libraries: LibRI and LibComm and need to define LIBRI_DIR and LIBCOMM_DIR
in the file Makefile.vars or use

@ag LIBRI_DIR=/public/software/LibRI LIBCOMM_DIR=/public/software/LibComm

directly.

4.8. Build ABACUS with make 21

http://abacus.deepmodeling.com/en/latest/advanced/interface/dpgen.html
http://abacus.deepmodeling.com/en/latest/advanced/interface/dpgen.html
https://github.com/deepmodeling/deepmd-kit/blob/master/doc/inference/cxx.md
https://github.com/abacusmodeling/LibRI
https://github.com/abacusmodeling/LibComm

CHAPTER
FIVE

RUNNING SCF

5.1 Initializing SCF

Good initializing would abate the number of iteration steps in SCF. Charge density should be initialed for constructing
the initial hamiltonian operator.

In PW basis, wavefunction should be initialized for iterate diagonalization method. In LCAO basis, wavefunction can be
read to calculate initial charge density. The wavefunction itself does not have to be initialized.

5.1.1 Charge Density

init_chg is used for choosing the method of charge density initialization.
e atomic : initial charge density by atomic charge density from pseudopotential file under keyword PP_ RHOATOM

e file: initial charge density from files produced by previous calculations with out_chg 1.

5.1.2 Wave function

init_wfc is used for choosing the method of wavefunction coefficient initialization.

When basis_type=pw, setting of random and atomic are supported. Atomic wave function is read from pseu-
dopotential file under keyword PP_P SWEC, if setting is at omic and number of band of atomic wavefunction less than
nbands in INPUT file, the extra bands will be initialed by random.

When basis_type=1lcao, we further support reading of initial wavefunction by setting init_wfc to file. In
LCAO code, wave function is used to initialize density matrix and real-space charge density. For such purpose, a file
containing wavefunction must be prepared. Such files can be generated from previous calculations with out_wfc_Ilcao
1.

5.2 Constructing the Hamiltonian

5.2.1 Exchange-Correlation Functionals

In our package, the XC functional can be set explicitly using the dft_functional keyword in INPUT file. If
dft_functional is not specified, ABACUS will use the xc functional indicated in the pseudopotential file.

Several common functionals are implemented in ABACUS, such as PZ and PBE. Users can check out this file for a
complete list of functionals implemented in ABACUS. Furthermore, if ABACUS is compiled with LIBXC, we also
support all the LDA, GGA and meta-GGA functionals provided therein.

22

ABACUS

Here, we use a simple example calculation for illustration.
1. Default setting:

In the original INPUT file, there is no specification of the dft_functional keyword. As a result, we use the
default option, that is to use the xc functional in the pseudopotential file, Si.pz—-vbc.UPF. We can take a look
at the first few lines of the <PP_HEADER> section from the pseudopotential file:

<PP_HEADER>

0 Version Number

Si Element

NC Norm - Conserving pseudopotential
F Nonlinear Core Correction

SLA PZ NOGX NOGC PZ Exchange-Correlation functional

From the line commented ‘Exchange-Correlation functional’, we see that this pseudopotential is generated using
PZ functional. As a result, if we run ABACUS with the original setting, PZ functional will be used.

Note : for systems with multiple elements, if no dft_functional is specified, users should make
sure that all pseudopotentials are using the same functional. Otherwise, the type of xc functional should
be specified explicitly.

2. Using PBE

On the other hand, users might also explicitly specify the xc functional through dft_functional parameter.
For example, to use PBE functional, add the following line to INPUT file and rerun the calculation:

[dft_functional PBE]

3. More functionals from LIBXC

ABACUS has its own implementation of the PBE functional as well as a few others, but our list is far from com-
prehensive. However, if ABACUS is compiled with LIBXC, we also support all the LDA, GGA and meta-GGA
functionals provided therein.

For this part, users should compile the ABACUS code with LIBXC linked (version 5.1.7 or higher).

To use SCAN functional, make the following modification to the INPUT file:

[dft_functional SCAN]

Note that in the case of PBE and SCAN, we are using ‘short-hand’ names to represent the entire functional, which is
made up of individual exchange and correlation components. A complete list of ‘short-hand’ expressions supported
by ABACUS can be found in source code.

Apart from the ‘short-hand’ names, ABACUS also allow supplying exchange-correlation functionals as combina-
tions of LIBXC keywords for functional components, joined by plus sign, for example, setting:

[dft_functional LDA_X_YUKAWA+LDA_C_1D_CSC]

means we are using the short-range Yukawa attenuated exchange along with the Casula, Sorella & Senatore LDA
correlation functional.

The list of LIBXC keywords can be found on its website.
4. Temperature-dependent functional

In ABACUS, we provide temperature-dependent functionals through LIBXC. For such functionals, the keyword
xc_temperature (unit is Rydberg) is used to specify the temperature, such as the following:

dft_functional